78
Views
42
CrossRef citations to date
0
Altmetric
Review

Targeting sigma receptors: novel medication development for drug abuse and addiction

Pages 351-358 | Published online: 10 Jan 2014

References

  • Martin WR, Eades CE, Thompson JA, Huppler RE. The effects of morphine and nalorphine-like drugs in the non-dependent and morphine-dependent chronic spinal dog. J. Pharmacol. Exp. Ther.197, 517–532 (1976).
  • Matsumoto RR, Bowen WD, Su TP. Sigma Receptors: Chemistry, Cell Biology and Clinical Implications. Springer, NY, USA 413 (2007).
  • Bouchard P, Quirion R. [3H]1,3-di(2-tolyl)guanidine and [3H](+)pentazocine binding sites in the rat brain: autoradiographic visualization of the putative σ1 and σ2 receptor subtypes. Neuroscience76, 467–477 (1997).
  • Gundlach AL, Largent BL, Snyder SH. Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine. J. Neurosci.6, 1757–1770 (1986).
  • McLean S, Weber E. Autoradiographic visualization of haloperidol-sensitive sigma receptors in guinea-pig brain. Neuroscience25, 259–269 (1988).
  • Bastianetto S, Rouquier L, Perrault G, Sanger DJ. DTG-induced circling behaviour in rats may involve the interaction between sigma sites and nigro-striatal dopaminergic pathways. Neuropharmacology34, 281–287 (1995).
  • Booth RG, Baldssarini RJ. (+)-6,7-Benzomorphan sigma ligands stimulate dopamine synthesis in rat corpus striatum tissue. Brain Res.557, 349–352 (1991).
  • Dong LY, Cheng ZX, Fu YM et al. Neurosteroid dehyroepiandrosterone sulfate enhances spontaneous glutamate release in rat prelimbic cortex through activation of dopamine D1 and σ-1 receptor. Neuropharmacology52, 966–974 (2007).
  • Martina M, Turcotte ME, Halman S, Bergeron R. The σ-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J. Physiol.578, 143–157 (2007).
  • Weiser SD, Patrick SL, Mascarella SW et al. Stimulation of rat striatal tyrosine hydroxylase activity following intranigral administration of s receptor ligands. Eur. J. Pharmacol.275, 1–7 (1995).
  • Brammer MK, Gilmore DL, Matsumoto RR. Interactions between 3,4-methylenedioxymethamphetamine (MDMA) and σ1 receptors. Eur. J. Pharmacol.553, 141–145 (2006).
  • Matsumoto RR, Liu Y, Lerner M, Howard EW, Brackett DJ. Sigma receptors: potential medications development target for anti-cocaine agents. Eur. J. Pharmacol.469, 1–12 (2003).
  • Nguyen EC, McCracken KA, Pouw B, Matsumoto RR. Involvement of sigma receptors in the actions of methamphetamine: receptor binding and behavioral studies. Neuropharmacology49, 638–645 (2005).
  • Sharkey J, Glen KA, Wolfe S, Kuhar MJ. Cocaine binding at sigma receptors. Eur. J. Pharmacol.149, 171–174 (1988).
  • Su TP. Evidence for sigma opioid receptor: Binding of [3H]SKF-10047 to etorphine-inaccessible sites in guinea-pig brain. J. Pharmacol. Exp. Ther.223, 284–290 (1982).
  • Tam SW. Naloxone-inaccessible sigma receptor in rat central nervous system. Proc. Natl Acad. Sci. USA80, 6703–6707 (1983).
  • Tam SW, Cook L. Sigma opiates and certain antipsychotic drugs mutually inhibit (+)-[3H]SKF 10,047 and [3H]haloperidol binding in guinea pig brain membranes. Proc. Natl Acad. Sci. USA81(17), 5618–5621 (1984)
  • Fontanilla D, Johannessen M, Hajipour AR, Cozzi NV, Jackson MB, Ruoho AE. The hallucinogen N,N-dimehtyltryptamine (DMT) is an endogenous σ-1 receptor regulator. Science323, 934–937 (2009).
  • Su TP, London ED, Jaffe JH. Steroid binding at sigma receptors suggest a link between endocrine, nervous and immune systems. Science240, 219–221 (1988).
  • Maurice T, Urani A, Phan VL, Romieu P. The interaction between neuroactive steroids and the σ1 receptor function: behavioral consequences and therapeutic opportunities. Brain Res. Rev.37, 116–132 (2001).
  • Su TP, Weissman AD, Yeh SY. Endogenous ligands for sigma opioid receptors in the brain (“sigmaphin”): evidence from binding assays. Life Sci.38, 2199–2210 (1986).
  • Contreras PC, Di Maggio DA, O’Donohue TL. An endogenous ligand for the sigma opioid binding site. Synapse1, 57–61 (1987).
  • Nagornaia LV, Samovilova NN, Korobov NV, Vinogradov VA. Partial purification of endogenous inhibitors of (+)-[3H]SKF-10047 binding with sigma opioid receptors of the liver. Biull. Eksp. Biol. Med.106, 314–317 (1988).
  • Neumaier JF, Chavkin C. Calcium-dependent displacement of haloperidol-sensitive sigma receptor binding in rat hippocampal slices following tissue depolarization. Brain Res.500, 215–222 (1989).
  • Connor MA, Chavkin C. Focal stimulation of specific pathways in the rat hippocampus causes a reduction in radioligand binding to the haloperidol-sensitive sigma receptor. Exp. Brain Res.85, 528–536 (1991).
  • Guitart X, Codony X, Monroy X. Sigma receptors: biology and therapeutic potential. Psychopharmacology174, 301–319 (2004).
  • Mei J, Pasternak G. Molecular cloning and pharmacological characterization of the rat σ1 receptor. Biochem. Pharmacol.62, 349–355 (2001).
  • Prasad PD, Li HW, Fei YJ et al. Exon–intron structure, analysis of promoter region, and chromosomal localization of the human type 1 sigma receptor gene. J. Neurochem.70, 443–451 (1998).
  • Pal A, Chu UB, Ramachandran S et al. Juxtaposition of the steroid binding domain-like I and II regions constitutes a ligand binding site in the σ-1 receptor. J. Biol. Chem.283, 19646–19656 (2008).
  • Hayashi T, Su TP. σ-1 receptor chaperones at the ER–mitochondrion interface regulate Ca2+ signaling and cell survival. Cell131, 596–610 (2007).
  • Aydar E, Palmer CP, Klyachko VA, Jackson MB. The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron34, 399–410 (2002).
  • Mavlyutov TA, Ruoho AE. Ligand-dependent localization and intracellular stability of σ-1 receptors in CHO-K1 cells. J. Mol. Signal.2, 1–7 (2007).
  • Hellewell SB, Bowen WD. A sigma-like binding site in rat pheochromocytoma (PC12) cells: decreased affinity for (+)-benxomorphans and lower molecular weight suggest a different sigma receptor form from that of guinea pig brain. Brain Res.527, 244–253 (1990).
  • Zeng C, Vangveravong S, Xu J et al. Subcellular localization of σ-2 receptors in breast cancer cells using two-photon and confocal microscopy. Cancer Res.67, 6708–6716 (2007).
  • Crawford KW, Coop A, Bowen WD. σ2 receptors up regulate changes in sphingolipid levels in breast tumor cells. Eur. J. Pharmacol.443, 207–209 (2002).
  • Gebreselassie D, Bowen WD. σ2 receptors are specially localized to lipid rafts in rat liver membranes. Eur. J. Pharmacol.493, 19–28 (2004).
  • Hashimoto K, Ishiwata K. Sigma receptor ligands: possible application as therapeutic drugs and as radiopharmaceuticals. Curr. Pharm. Des.12, 3857–3876 (2006).
  • Guitart X, Farre AJ. The effect of E-5842, a sigma receptor ligand and potential atypical antipsychotic, on Fos expression in the rat forebrain. Eur. J. Pharmacol.363, 127–130 (1998).
  • Liu Y, Chen GD, Lerner MR, Brackett DJ, Matsumoto RR. Cocaine up-regulates Fra-2 and σ-1 receptor gene and protein expression in brain regions involved in addiction and reward. J. Pharmcol. Exp. Ther.314, 770–779 (2005).
  • Liu Y, Matsumoto RR. Alterations in Fra-2 and σ1 receptor gene and protein expression are associated with the development of cocaine-induced behavioral sensitization: time course and regional distribution studies. J. Pharmcol. Exp. Ther.327, 187–195 (2008).
  • Sharp JW. Phencyclidine (PCP) acts at sigma sites to induce c-fos gene expression. Brain Res.758, 51–58 (1997).
  • Romieu P, Meunier J, Garcia D et al. The sigma1 (σ1) receptor activation is a key step for the reactivation of cocaine conditioned place preference by drug priming. Psychopharmacology175, 154–162 (2004).
  • Stefanski R, Justinova Z, Hayashi T, Takebayashi M, Goldberg SR, Su TP. σ1 receptor upregulation alter chronic methamphetamine self-administration in rats: a study with yoked controls. Psychopharmacology175, 68–75 (2004).
  • Itzhak Y. Repeated methamphetamine-treatment alters brain σ receptors. Eur. J. Pharmacol.230, 243–244 (1993).
  • Martin-Fardon R, Maurice T, Aujla H, Bowen WD, Weiss F. Differential effects of σ1 receptor blockade on self-administration and conditioned reinstatement motivated by cocaine vs natural reward. Neuropsychopharmacology32, 1967–1973 (2007).
  • Romieu P, Martin-Fardon R, Maurice T. Involvement of the σ1 receptor in the cocaine-induced conditioned place preference. NeuroReport11, 2885–2888 (2000).
  • Romieu P, Phan VL, Martin-Fardon R, Maurice T. Involvement of the σ1 receptor in cocaine-induced conditioned place preference: possible dependence on dopamine uptake blockade. Neuropsychopharmacology26, 444–455 (2002).
  • Matsumoto RR, McCracken KA, Pouw B, Zhang Y, Bowen WD. Involvement of sigma receptors in the behavioral effects of cocaine: evidence from novel ligands and antisense oligodeoxynucleotides. Neuropharmacology42, 1043–1055 (2002).
  • Romieu P, Martin-Fardon R, Bowen WD, Maurice T. Sigma1 (σ1) receptor-related neuroactive steroids modulate cocaine-induced reward. J. Neurosci.23, 3572–3576 (2003).
  • Matsumoto RR, Pouw B, Mack AL, Daniels A, Coop A. Effects of UMB24 and (±)-SM 21, putative σ2-preferring antagonists, on behavioral toxic and stimulant effects of cocaine in mice. Pharmacol. Biochem. Behav.86, 86–91 (2007).
  • Kaushal N, Croom C, Shaikh J et al. SN79, a novel sigma (σ)-2 receptor antagonist attenuates cocaine-induced behaviors in mice. Presented at: 17th Annual Experimental Biology Meeting. San Diego, CA, USA, 5–9 April 2008.
  • Engel SR, Purdy RH, Grant KA. Characterization of discriminative stimulus effects of the neuroactive steroid pregnanolone. J. Pharmacol. Exp. Ther.297, 489–495 (2001).
  • Slifer BL, Balster RL. Reinforcing properties of stereoisomers of the putative sigma agonists N-allylnormetazocine and cyclazocine in rhesus monkeys. J. Pharmacol. Exp. Ther.225, 522–528 (1983).
  • Steinfels GF, Alberici GP, Tam SW, Cook L. Biochemical, behavioral, and electrophysiological actions of the selective sigma receptor ligand (+)-pentazocine. Neuropsychopharmacology1, 321–327 (1988).
  • Zhang D, Zhang L, Tang Y et al. Repeated cocaine administration induces gene expression changes through the dopamine D1 receptors. Neuropsychopharmacology30, 1443–1454 (2005).
  • Yuferov V, Nielsen D, Butelman E, Kreek MJ. Microarray studies of psychostimulant-induced changes in gene expression. Addict. Biol.10, 101–118 (2005).
  • Thomas MJ, Kalivvas PW, Shaham Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br. J. Pharmacol.154, 327–342 (2008).
  • Krasnova IN, Cadet JL. Methamphetamine toxicity and messengers of death. Brain Res. Rev.60(2), 379–407 (2009).
  • Matsumoto RR, Shaikh J, Wilson LL, Vedam S, Coop A. Attenuation of methamphetamine-induced effects through the antagonism of sigma (σ) receptors: Evidence from in vivo and in vitro studies. Eur. Neuropsychopharmacol.18, 871–881 (2008).
  • Takahashi S, Miwa Y, Horikomi K. Involvement of σ1 receptors in methamphetamine-induced behavioral sensitization in rats. Neurosci. Lett.289, 21–24 (2000).
  • Ujike H, Okamura K, Zushi Y, Akiyama K, Otsuki S. Persistent supersensitivity of sigma receptors develops during methamphetamine treatment. Eur. J. Pharmacol.211, 323–328 (1992).
  • Kitanaka J, Kitanaka N, Tatsuta T et al. σ1 receptor antagonists determine the behavioral pattern of the methamphetamine-induced stereotypy in mice. Psychopharmacology203, 781–792 (2009).
  • Matsumoto RR, Shaikh J, Wilson LL, Vedam S, McCurdy CR, Coop A. Attenuation of methamphetamine-induced effects through antagonism of sigma receptors: evidence from in vivo and in vitro studies. Presented at: College on Problems of Drug Dependence. San Juan, Puerto Rico, 14–19 June 2008.
  • Gable RS. Risk assessment of ritual use of oral dimethyltryptamine (DMT) and harmala alkaloids. Addiction102, 24–34 (2007).
  • de Costa BR, Bowen WD, Hellewell SB et al. Synthesis and evaluation of optically pute [3H]-(+)-pentazocine, a highly potent and selective radioligand for sigma receptors. FEBS Lett.251, 53–58 (1989).
  • Ault DT, Werling LL. Phencyclidine and dizocilpine modulate dopamine release from rat nucleus accumbens via sigma receptors. Eur. J. Pharmacol.386, 145–153 (1999).
  • Okuyama S, Ogawa S, Nakazato A, Tomizawa K. Effect of NE-100, a novel sigma receptor ligand, on phencyclidine- induced delayed cognitive dysfunction in rats. Neurosci. Lett.189, 60–62 (1995).
  • Sharp JW. PCP and ketamine inhibit non-NMDA glutamate receptor mediated hsp70 induction. Brain Res.728, 215–224 (1996).
  • Sharp JW, Williams DS. Effects of sigma ligands on the ability of rimcazole to inhibit PCP hsp70 induction. Brain Res. Bull.39, 359–366 (1996).
  • Takahashi S, Takagi K, Horikomi K. Effects of a novel, selective, sigma1-ligand, MS-377, on phencyclidine-induced behaviour. Naunyn Schmiedebergs Arch. Pharmacol.364, 81–86 (2001).
  • Takahashi S, Horikomi K, Kato T. MS-377, a novel selective σ1 receptor ligand, reverses phencyclidine-induced release of dopamine and serotonin in rat brain. Eur. J. Pharmacol.427, 211–219 (2001).
  • Maurice T, Casalino M, Lacroix M, Romieu P. Involvement of the σ1 receptor in the motivational effects of ethanol in mice. Pharmacol. Biochem. Behav.74, 869–876 (2003).
  • Sabeti J, Gruol D. Emergence of NMDAR-independent long-term potentiation at hippocampal CA1 synapses following early adolescent exposure to chronic intermittent ethanol: role for sigma-receptors. Hippocampus18, 148–168 (2008).
  • Sabino V, Cottone P, Zhao Y et al. The sigma-receptor antagonist BD-1063 decreases ethanol intake and reinforcement in animal models of excessive drinking. Neuropsychopharmacology34(6), 1482–1493 (2008).
  • Noda A, Noda Y, Kamei H et al. Phencyclidine impairs latent learning in mice: interaction between glutamateric systems and σ1 receptors. Neuropsychopharmacology24, 451–460 (2001).
  • Horan B, Gardner EL, Dewey SL, Brodie JD, Ashby CR Jr. The selective σ1 receptor agonist, 1-(3,4-dimethoxyphenethyl)-4-(phenylpropyl)piperazine (SA4503), blocks the acquisition of the conditioned place preference response to (-)-nicotine in rats. Eur. J. Pharmacol.426, R1–R2 (2001).
  • Dhir A, Kulkarni SK. Possible involvement of σ-1 receptors in the anti-immobility action of bupropion, a dopamine reuptake inhibitor. Fundam. Clin. Pharmacol.22, 387–394 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.