66
Views
5
CrossRef citations to date
0
Altmetric
Special Report

Role of arginase in asthma: potential clinical applications

Pages 17-23 | Published online: 10 Jan 2014

References

  • Hamid Q, Tulic M. Immunobiology of asthma. Annu. Rev. Physiol.71, 489–507 (2009).
  • Maarsingh H, Zaagsma J, Meurs H. Arginine homeostasis in allergic asthma. Eur. J. Pharmacol.585(2–3), 375–384 (2008).
  • Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol. Rev.84(3), 731–765 (2004).
  • Smith AD, Cowan JO, Brassett KP, Herbison GP, Taylor DR. Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N. Engl. J. Med.352(21), 2163–2173 (2005).
  • Lara A, Khatri SB, Wang Z et al. Alterations of the arginine metabolome in asthma. Am. J. Respir. Crit. Care Med.178(7), 673–681 (2008).
  • Zimmermann N, King NE, Laporte J et al. Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J. Clin. Invest.111(12), 1863–1874 (2003).
  • Morris CR, Poljakovic M, Lavrisha L, Machado L, Kuypers FA, Morris SM Jr. Decreased arginine bioavailability and increased serum arginase activity in asthma. Am. J. Respir. Crit. Care Med.170(2), 148–153 (2004).
  • Li H, Romieu I, Sienra-Monge JJ et al. Genetic polymorphisms in arginase I and II and childhood asthma and atopy. J. Allergy Clin. Immunol.117(1), 119–126 (2006).
  • Litonjua AA, Lasky-Su J, Schneiter K et al.ARG1 is a novel bronchodilator response gene: screening and replication in four asthma cohorts. Am. J. Respir. Crit. Care Med.178(7), 688–694 (2008).
  • Salam MT, Islam T, Gauderman WJ, Gilliland FD. Roles of arginase variants, atopy, and ozone in childhood asthma. J. Allergy Clin. Immunol.123(3), 596–602 E591–E598 (2009).
  • Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol.5(8), 641–654 (2005).
  • Munder M, Mollinedo F, Calafat J et al. Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood105(6), 2549–2556 (2005).
  • Zimmermann N, Rothenberg ME. The arginine–arginase balance in asthma and lung inflammation. Eur. J. Pharmacol.533(1–3), 253–262 (2006).
  • Maarsingh H, Pera T, Meurs H. Arginase and pulmonary diseases. Naunyn Schmiedebergs Arch. Pharmacol.378(2), 171–184 (2008).
  • Meurs H, McKay S, Maarsingh H et al. Increased arginase activity underlies allergen-induced deficiency of cNOS-derived nitric oxide and airway hyperresponsiveness. Br. J. Pharmacol.136(3), 391–398 (2002).
  • Yang M, Rangasamy D, Matthaei KI et al. Inhibition of arginase I activity by RNA interference attenuates IL-13-induced airways hyperresponsiveness. J. Immunol.177(8), 5595–5603 (2006).
  • Maarsingh H, Tio MA, Zaagsma J, Meurs H. Arginase attenuates inhibitory nonadrenergic noncholinergic nerve-induced nitric oxide generation and airway smooth muscle relaxation. Respir. Res.6, 23 (2005).
  • Maarsingh H, Leusink J, Bos IS, Zaagsma J, Meurs H. Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma. Respir. Res.7, 6 (2006).
  • Zhao A, Urban JF Jr, Anthony RM et al. Th2 cytokine-induced alterations in intestinal smooth muscle function depend on alternatively activated macrophages. Gastroenterology135(1), 217–225 e1 (2008).
  • Kitowska K, Zakrzewicz D, Konigshoff M et al. Functional role and species-specific contribution of arginases in pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol.294(1), L34–L45 (2008).
  • Takemoto K, Ogino K, Shibamori M et al. Transiently, paralleled upregulation of arginase and nitric oxide synthase and the effect of both enzymes on the pathology of asthma. Am. J. Physiol. Lung Cell. Mol. Physiol.293(6), L1419–L1426 (2007).
  • Liu H, Drew P, Gaugler AC, Cheng Y, Visner GA. Pirfenidone inhibits lung allograft fibrosis through L-arginine-arginase pathway. Am. J. Transplant.5(6), 1256–1263 (2005).
  • Mabalirajan U, Aich J, Agrawal A, Ghosh B. Mepacrine inhibits subepithelial fibrosis by reducing the expression of arginase and TGF-β1 in an extended subacute mouse model of allergic asthma. Am. J. Physiol. Lung Cell. Mol. Physiol.297(3), L411–L419 (2009).
  • Grasemann H, Schwiertz R, Matthiesen S, Racke K, Ratjen F. Increased arginase activity in cystic fibrosis airways. Am. J. Respir. Crit. Care Med.172(12), 1523–1528 (2005).
  • Lindemann D, Racke K. Glucocorticoid inhibition of interleukin-4 (IL-4) and interleukin-13 (IL-13) induced up-regulation of arginase in rat airway fibroblasts. Naunyn Schmiedebergs Arch. Pharmacol.368(6), 546–550 (2003).
  • Lee C, Kolesnik TB, Caminschi I et al. Suppressor of cytokine signalling 1 (SOCS1) is a physiological regulator of the asthma response. Clin. Exp. Allergy39(6), 897–907 (2009).
  • Mayer AK, Bartz H, Fey F, Schmidt LM, Dalpke AH. Airway epithelial cells modify immune responses by inducing an anti-inflammatory microenvironment. Eur. J. Immunol.38(6), 1689–1699 (2008).
  • Sharkhuu T, Matthaei KI, Forbes E et al. Mechanism of interleukin-25 (IL-17E)-induced pulmonary inflammation and airways hyper-reactivity. Clin. Exp. Allergy36(12), 1575–1583 (2006).
  • Holgate ST. Pathogenesis of asthma. Clin. Exp. Allergy38(6), 872–897 (2008).
  • Maarsingh H, Zuidhof AB, Bos IS et al. Arginase inhibition protects against allergen-induced airway obstruction, hyperresponsiveness, and inflammation. Am. J. Respir. Crit. Care Med.178(6), 565–573 (2008).
  • Ckless K, Lampert A, Reiss J et al. Inhibition of arginase activity enhances inflammation in mice with allergic airway disease, in association with increases in protein S-nitrosylation and tyrosine nitration. J. Immunol.181(6), 4255–4264 (2008).
  • Munder M, Schneider H, Luckner C et al. Suppression of T-cell functions by human granulocyte arginase. Blood108(5), 1627–1634 (2006).
  • Oberlies J, Watzl C, Giese T et al. Regulation of NK cell function by human granulocyte arginase. J. Immunol.182(9), 5259–5267 (2009).
  • Choi BS, Martinez-Falero IC, Corset C et al. Differential impact of L-arginine deprivation on the activation and effector functions of T cells and macrophages. J. Leukoc. Biol.85(2), 268–277 (2009).
  • Niese KA, Collier AR, Hajek AR et al. Bone marrow cell derived arginase I is the major source of allergen-induced lung arginase but is not required for airway hyperresponsiveness, remodeling and lung inflammatory responses in mice. BMC Immunol.10, 33 (2009).
  • North ML, Khanna N, Marsden PA, Grasemann H, Scott JA. Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma. Am. J. Physiol. Lung Cell. Mol. Physiol.296(6), L911–L920 (2009).
  • Kenyon NJ, Bratt JM, Linderholm AL, Last MS, Last JA. Arginases I and II in lungs of ovalbumin-sensitized mice exposed to ovalbumin: sources and consequences. Toxicol. Appl. Pharmacol.230(3), 269–275 (2008).
  • Chibana K, Trudeau JB, Mustovich AT et al. IL-13 induced increases in nitrite levels are primarily driven by increases in inducible l as compared with effects on arginases in human primary bronchial epithelial cells. Clin. Exp. Allergy38(6), 936–946 (2008).
  • Maarsingh H, Bossenga BE, Bos IS, Volders HH, Zaagsma J, Meurs H. L-arginine deficiency causes airway hyperresponsiveness after the late asthmatic reaction. Eur. Respir. J.34(1), 191–199 (2009).
  • Sapienza MA, Kharitonov SA, Horvath I, Chung KF, Barnes PJ. Effect of inhaled L-arginine on exhaled nitric oxide in normal and asthmatic subjects. Thorax53(3), 172–175 (1998).
  • de Gouw HW, Verbruggen MB, Twiss IM, Sterk PJ. Effect of oral L-arginine on airway hyperresponsiveness to histamine in asthma. Thorax54(11), 1033–1035 (1999).
  • Schwedhelm E, Maas R, Freese R et al. Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: impact on nitric oxide metabolism. Br. J. Clin. Pharmacol.65(1), 51–59 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.