407
Views
52
CrossRef citations to date
0
Altmetric
Review

Therapeutic applications of organosulfur compounds as novel hydrogen sulfide donors and/or mediators

&
Pages 123-133 | Published online: 10 Jan 2014

References

  • Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci.16(3), 1066–1071 (1996).
  • Lefer DJ. A new gaseous signaling molecule emerges: cardioprotective role of hydrogen sulfide. Proc. Natl Acad. Sci. USA104(46), 17907–17908 (2007).
  • Wang X, Wang Q, Guo W, Zhu YZ. Hydrogen sulfide attenuates cardiac dysfunction in a rat model of heart failure: a mechanism through cardiac mitochondrial protection. Biosci. Rep.31(2), 87–98 (2010).
  • Yang G, Wu L, Jiang B et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science322(5901), 587–590 (2008).
  • Yang G, Wu L, Bryan S, Khaper N, Mani S, Wang R. Cystathionine γ-lyase deficiency and overproliferation of smooth muscle cells. Cardiovasc. Res.86(3), 487–495 (2010).
  • Kimura H, Nagai Y, Umemura K, Kimura Y. Physiological roles of hydrogen sulfide: synaptic modulation, neuroprotection, and smooth muscle relaxation. Antioxid. Redox Signal.7(5–6), 795–803 (2005).
  • Lee M, Schwab C, Yu S, McGeer E, McGeer PL. Astrocytes produce the antiinflammatory and neuroprotective agent hydrogen sulfide. Neurobiol. Aging30(10), 1523–1534 (2009).
  • Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS. Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell9(2), 135–146 (2010).
  • Medeiros JV, Bezerra VH, Gomes AS et al. Hydrogen sulfide prevents ethanol-induced gastric damage in mice: role of ATP-sensitive potassium channels and capsaicin-sensitive primary afferent neurons. J. Pharmacol. Exp. Ther.330(3), 764–770 (2009).
  • Wu L, Yang W, Jia X et al. Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats. Lab. Invest.89(1), 59–67 (2009).
  • Sivarajah A, Collino M, Yasin M et al. Anti-apoptotic and anti-inflammatory effects of hydrogen sulfide in a rat model of regional myocardial I/R. Shock31(3), 267–274 (2009).
  • Kery V, Bukovska G, Kraus JP. Transsulfuration depends on heme in addition to pyridoxal 5´-phosphate. Cystathionine β-synthase is a heme protein. J. Biol. Chem.269(41), 25283–25288 (1994).
  • Erickson PF, Maxwell IH, Su LJ, Baumann M, Glode LM. Sequence of cDNA for rat cystathionine γ-lyase and comparison of deduced amino acid sequence with related Escherichia coli enzymes. Biochem. J.269(2), 335–340 (1990).
  • Meier M, Janosik M, Kery V, Kraus JP, Burkhard P. Structure of human cystathionine β-synthase: a unique pyridoxal 5´-phosphate-dependent heme protein. EMBO J.20(15), 3910–3916 (2001).
  • Jhee KH, Kruger WD. The role of cystathionine β-synthase in homocysteine metabolism. Antioxid. Redox Signal.7(5–6), 813–822 (2005).
  • Lowicka E, Beltowski J. Hydrogen sulfide (H2S) – the third gas of interest for pharmacologists. Pharmacol. Rep.59(1), 4–24 (2007).
  • Szabo C. Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug Discov.6(11), 917–935 (2007).
  • Kimura H. Hydrogen sulfide: from brain to gut. Antioxid. Redox Signal.12(9), 1111–1123 (2010).
  • Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R. Relative contributions of cystathionine β-synthase and γ-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J. Biol. Chem.284(33), 22457–22466 (2009).
  • Chen CQ, Xin H, Zhu YZ. Hydrogen sulfide: third gaseous transmitter, but with great pharmacological potential. Acta Pharmacol. Sin.28(11), 1709–1716 (2007).
  • Elsey DJ, Fowkes RC, Baxter GF. Regulation of cardiovascular cell function by hydrogen sulfide (H2S). Cell Biochem. Funct.28(2), 95–106 (2010).
  • Olson KR, Whitfield NL. Hydrogen sulfide and oxygen sensing in the cardiovascular system. Antioxid. Redox Signal.12(10), 1219–1234 (2010).
  • Elsey DJ, Fowkes RC, Baxter GF. L-cysteine stimulates hydrogen sulfide synthesis in myocardium associated with attenuation of ischemia-reperfusion injury. J. Cardiovasc. Pharmacol. Ther.15(1), 53–59 (2010).
  • Fiorucci S. Prevention of nonsteroidal anti-inflammatory drug-induced ulcer: looking to the future. Gastroenterol. Clin. North Am.38(2), 315–332 (2009).
  • Szabó C, Kiss L, Pankotai E. Cytoprotective and anti-inflammatory effects of hydrogen sulfide in macrophages and in mice. Crit. Care11(Suppl. 2), P2 (2007).
  • Szabó C, Veres G, Radovits T, Karck M, Szabó G. Infusion of sodium sulfide improves myocardial and endothelial function in a canine model of cardiopulmonary bypass. Crit. Care11(Suppl. 2), P1 (2007).
  • Li L, Bhatia M, Zhu YZ et al. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J.19(9), 1196–1198 (2005).
  • Zhang H, Zhi L, Moore PK, Bhatia M. Role of hydrogen sulfide in cecal ligation and puncture-induced sepsis in the mouse. Am. J. Physiol. Lung Cell. Mol. Physiol.290(6), L1193–L1201 (2006).
  • Meng QH, Yang G, Yang W, Jiang B, Wu L, Wang R. Protective effect of hydrogen sulfide on balloon injury-induced neointima hyperplasia in rat carotid arteries. Am. J. Pathol.170(4), 1406–1414 (2007).
  • Wallace JL. Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol. Sci.28(10), 501–505 (2007).
  • Blachier F, Mariotti F, Huneau JF, Tome D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids33(4), 547–562 (2007).
  • Papenbrock J, Riemenschneider A, Kamp A, Schulz-Vogt HN, Schmidt A. Characterization of cysteine-degrading and H2S-releasing enzymes of higher plants – from the field to the test tube and back. Plant Biol. (Stuttg.)9(5), 582–588 (2007).
  • Kamoun P. Endogenous production of hydrogen sulfide in mammals. Amino Acids26(3), 243–254 (2004).
  • Jacob C, Anwar A, Burkholz T. Perspective on recent developments on sulfur-containing agents and hydrogen sulfide signaling. Planta Med.74(13), 1580–1592 (2008).
  • Munchberg U, Anwar A, Mecklenburg S, Jacob C. Polysulfides as biologically active ingredients of garlic. Org. Biomol. Chem.5, 1505–1518 (2007).
  • Powolny AA, Singh SV. Multitargeted prevention and therapy of cancer by diallyl trisulfide and related Allium vegetable-derived organosulfur compounds. Cancer Lett.269(2), 305–314 (2008).
  • Milner JA. Mechanisms by which garlic and allyl sulfur compounds suppress carcinogen bioactivation. Garlic and carcinogenesis. Adv. Exp. Med. Biol.492, 69–81 (2001).
  • Rahman K. Historical perspective on garlic and cardiovascular disease. J. Nutr.131(3s), 977S–979S (2001).
  • Benavides GA, Mills RW, Squadrito GL, Doeller JE, Kraus DW. Effective of garlic-derived sulfur compounds in H2S-mediated vasoactivity. Free Radic. Biol. Med.41, S19–S20 (2006).
  • Benavides GA, Squadrito GL, Mills RW et al. Hydrogen sulfide mediates the vasoactivity of garlic. Proc. Natl Acad. Sci. USA104(46), 17977–17982 (2007).
  • Chuah SC, Moore PK, Zhu YZ. S-allylcysteine mediates cardioprotection in an acute myocardial infarction rat model via a hydrogen sulfide-mediated pathway. Am. J. Physiol. Heart Circ. Physiol.293(5), H2693–H2701 (2007).
  • Amagase H, Petesch BL, Matsuura H, Kasuga S, Itakura Y. Intake of garlic and its bioactive components. J. Nutr.131(3s), 955S–962S (2001).
  • Amagase H. Clarifying the real bioactive constituents of garlic. J. Nutr.136(3 Suppl.), 716S–725S (2006).
  • Truong D, Hindmarsh W, O’Brien PJ. The molecular mechanisms of diallyl disulfide and diallyl sulfide induced hepatocyte cytotoxicity. Chem. Biol. Interact.180(1), 79–88 (2009).
  • Brosnan JT, Brosnan ME. The sulfur-containing amino acids: an overview. J. Nutr.136(6 Suppl.), 1636S–1640S (2006).
  • Haruyuki O, Daikichiro N, Hidehiko K, Hideaki Y. Synthesis of L-cysteine and its analogues by intact cells containing cysteine desulfhydrase. Agric. Biol. Chem.45, 259–263 (1981).
  • Nishikawa-Ogawa M, Wanibuchi H, Morimura K et al.N-acetylcysteine and S-methylcysteine inhibit MeIQx rat hepatocarcinogenesis in the post-initiation stage. Carcinogenesis27(5), 982–988 (2006).
  • Hsu CC, Huang CN, Hung YC, Yin MC. Five cysteine-containing compounds have antioxidative activity in Balb/cA mice. J. Nutr.134(1), 149–152 (2004).
  • Atmaca G. Antioxidant effects of sulfur-containing amino acids. Yonsei Med. J.45(5), 776–788 (2004).
  • Shirin H, Pinto JT, Kawabata Y et al. Antiproliferative effects of S-allylmercaptocysteine on colon cancer cells when tested alone or in combination with sulindac sulfide. Cancer Res.61(2), 725–731 (2001).
  • Itokawa Y, Inoue K, Sasagawa S, Fujiwara M. Effect of S-methylcysteine sulfoxide, S-allylcysteine sulfoxide and related sulfur-containing amino acids on lipid metabolism of experimental hypercholesterolemic rats. J. Nutr.103(1), 88–92 (1973).
  • Tcherniuk S, van Lis R, Kozielski F, Skoufias DA. Mutations in the human kinesin Eg5 that confer resistance to monastrol and S-trityl-L-cysteine in tumor derived cell lines. Biochem. Pharmacol.79(6), 864–872 (2010).
  • Wang Q, Liu HR, Mu Q, Rose P, Zhu YZ. S-propargyl-cysteine protects both adult rat hearts and neonatal cardiomyocytes from ischemia/hypoxia injury: the contribution of the hydrogen sulfide-mediated pathway. J. Cardiovasc. Pharmacol.54(2), 139–146 (2009).
  • Wang Q, Wang XL, Liu HR, Rose P, Zhu YZ. Protective effects of cysteine analogues on acute myocardial ischemia: novel modulators of endogenous H2S production. Antioxid. Redox Signal.12(10), 1155–1165 (2010).
  • Gong QH, Pan LL, Liu XH, Wang Q, Huang H, Zhu YZ. S-propargyl-cysteine (ZYZ-802), a sulphur-containing amino acid, attenuates β-amyloid-induced cognitive deficits and pro-inflammatory response: involvement of ERK1/2 and NF-κB pathway in rats. Amino AcidsDOI: 10.1007/s00726-010-0685-1 (2010) (Epub ahead of print).
  • Gong QH, Wang Q, Pan LL, Liu XH, Xin H, Zhu YZ. S-propargyl-cysteine, a novel hydrogen sulfide-modulated agent, attenuates lipopolysaccharide-induced spatial learning and memory impairment: involvement of TNF signaling and NF-κB pathway in rats. Brain Behav. Immun.25(1), 110–119 (2010).
  • Gong QH, Wang Q, Pan LL, Liu XH, Huang H, Zhu YZ. Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats. Pharmacol. Biochem. Behav.96(1), 52–58 (2010).
  • Johnston M, Jankowski D, Marcotte P et al. Suicide inactivation of bacterial cystathionine γ-synthase and methionine γ-lyase during processing of L-propargylglycine. Biochemistry18(21), 4690–4701 (1979).
  • Tokoro M, Asai T, Kobayashi S, Takeuchi T, Nozaki T. Identification and characterization of two isoenzymes of methionine γ-lyase from Entamoeba histolytica: a key enzyme of sulfur-amino acid degradation in an anaerobic parasitic protist that lacks forward and reverse trans-sulfuration pathways. J. Biol. Chem.278(43), 42717–42727 (2003).
  • Kraus JP, Hasek J, Kozich V et al. Cystathionine γ-lyase: clinical, metabolic, genetic, and structural studies. Mol. Genet. Metab.97(4), 250–259 (2009).
  • Krupka HI, Huber R, Holt SC, Clausen T. Crystal structure of cystalysin from Treponema denticola: a pyridoxal 5´-phosphate-dependent protein acting as a haemolytic enzyme. EMBO J.19(13), 3168–3178 (2000).
  • Steegborn C, Clausen T, Sondermann P et al. Kinetics and inhibition of recombinant human cystathionine γ-lyase. Toward the rational control of transsulfuration. J. Biol. Chem.274(18), 12675–12684 (1999).
  • Clausen T, Huber R, Messerschmidt A, Pohlenz HD, Laber B. Slow-binding inhibition of Escherichia coli cystathionine β-lyase by L-aminoethoxyvinylglycine: a kinetic and x-ray study. Biochemistry36(41), 12633–12643 (1997).
  • Fiorucci S, Antonelli E. NO-NSAIDs: from inflammatory mediators to clinical readouts. Inflamm. Allergy Drug Targets5(2), 121–131 (2006).
  • Li L, Rossoni G, Sparatore A, Lee LC, Del Soldato P, Moore PK. Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic. Biol. Med.42(5), 706–719 (2007).
  • Sidhapuriwala J, Li L, Sparatore A, Bhatia M, Moore PK. Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative, on carrageenan-induced hindpaw oedema formation in the rat. Eur. J. Pharmacol.569(1–2), 149–154 (2007).
  • Bhatia M, Sidhapuriwala J, Moore PK. Treatment with H2S-releasing derivative of diclofenac reduces inflammation in carrageenan-induced hindpaw oedema. Inflam. Res.54(Suppl. 2), S185 (2005).
  • Baskar R, Sparatore A, Del Soldato P, Moore PK. Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative inhibit rat vascular smooth muscle cell proliferation. Eur. J. Pharmacol.594(1–3), 1–8 (2008).
  • Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid. Redox Signal.12(10), 1147–1154 (2010).
  • Rossoni G, Sparatore A, Tazzari V, Manfredi B, Del Soldato P, Berti F. The hydrogen sulphide-releasing derivative of diclofenac protects against ischaemia-reperfusion injury in the isolated rabbit heart. Br. J. Pharmacol.153(1), 100–109 (2008).
  • Bass SE, Sienkiewicz P, Macdonald CJ et al. Novel dithiolethione-modified nonsteroidal anti-inflammatory drugs in human hepatoma HepG2 and colon LS180 cells. Clin. Cancer Res.15(6), 1964–1972 (2009).
  • Moody TW, Switzer C, Santana-Flores W et al. Dithiolethione modified valproate and diclofenac increase E-cadherin expression and decrease proliferation of non-small cell lung cancer cells. Lung Cancer68(2), 154–160 (2010).
  • Lee M, Sparatore A, Del Soldato P, McGeer E, McGeer PL. Hydrogen sulfide-releasing NSAIDs attenuate neuroinflammation induced by microglial and astrocytic activation. Glia58(1), 103–113 (2010).
  • Li L, Whiteman M, Guan YY et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation117(18), 2351–2360 (2008).
  • Li L, Salto-Tellez M, Tan CH, Whiteman M, Moore PK. GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic. Biol. Med.47(1), 103–113 (2009).
  • Caliendo G, Cirino G, Santagada V, Wallace JL. Synthesis and biological effects of hydrogen sulfide (H2S): development of H2S-releasing drugs as pharmaceuticals. J. Med. Chem.53(17), 6275–6286 (2010).
  • Wagner F, Asfar P, Calzia E, Radermacher P, Szabo C. Bench-to-bedside review: Hydrogen sulphide – the third gaseous transmitter: applications for critical care. Crit. Care13(3), 213 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.