177
Views
38
CrossRef citations to date
0
Altmetric
Review

Hydrogen sulfide in cell survival: a double-edged sword

Pages 33-47 | Published online: 10 Jan 2014

References

  • Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J.16(13), 1792–1798 (2002).
  • Wang R. The gasotransmitter role of hydrogen sulfide. Antioxid. Redox Signal.5(4), 493–501 (2003).
  • Zhao W, Zhang J, Lu Y et al. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J.20(21), 6008–6016 (2001).
  • Kimura H. Hydrogen sulfide: from brain to gut. Antioxid. Redox Signal.12(9), 1111–1123 (2010).
  • Yang GD, Wang R. H2S and cellular proliferation and apoptosis. Sheng Li Xue Bao59(2), 133–140 (2007).
  • Wagner F, Asfar P, Calzia E et al. Bench-to-bedside review: hydrogen sulfide – the third gaseous transmitter: applications for critical care. Crit. Care13(3), 213 (2009).
  • Dorman DC, Moulin FJ, McManus BE et al. Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicol. Sci.65(1), 18–25 (2002).
  • Marshall T, Dorman D, Gardner D et al. Provisional advisory levels (PALs) for hydrogen sulfide (H2S). Inhal. Toxicol.21(Suppl. 3), 56–72 (2007).
  • Burri PH, Hlushchuk R, Djonov V. Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev. Dyn.231(3), 474–488 (2004).
  • Folkman J, Klagsbrun M. Angiogenic factors. Science235(4787), 442–447 (1987).
  • Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer3(6), 401–410 (2003).
  • Cai WJ, Wang MJ, Moore PK et al. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc. Res.76(1), 29–40 (2007).
  • Papapetropoulos A, Pyriochou A, Altaany Z et al. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc. Natl Acad. Sci. USA106(51), 21972–21977 (2009).
  • Wang MJ, Cai WJ, Li N et al. The hydrogen sulfide donor NaHS promotes angiogenesis in a rat model of hind limb ischemia. Antioxid. Redox Signal.12(9), 1065–1077 (2010).
  • Tyagi N, Moshal KS, Sen U et al. H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid. Redox Signal.11(1), 25–33 (2009).
  • Jeney V, Komódi E, Nagy E et al. Supression of hemin-mediated oxidation of low-density lipoprotein and subsequent endothelial reactions by hydrogen sulfide (H2S). Free Radic. Biol. Med.46(5), 616–623 (2009).
  • Henderson PW, Singh SP, Belkin D et al. Hydrogen sulfide protects against ischemia–reperfusion injury in an in vitro model of cutaneous tissue transplantation. J. Surg. Res.159(1), 451–455 (2010).
  • Eisen A, Fisman EZ, Rubenfire M et al. Ischemic preconditioning: nearly two decades of research. A comprehensive review. Atherosclerosis172(2), 201–210 (2004).
  • Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc. Res.70(2), 240–253 (2006).
  • Yao LL, Huang XW, Wang YG et al. Hydrogen sulfide protects cardiomyocytes from hypoxia/reoxygenation-induced apoptosis by preventing GSK-3β-dependent opening of mPTP. Am. J. Physiol. Heart Circ. Physiol.298(5), H1310–H1319 (2010).
  • Shi S, Li QS, Li H et al. Anti-apoptotic action of hydrogen sulfide is associated with early JNK inhibition. Cell Biol. Int.33(10), 1095–1101 (2009).
  • Pan TT, Chen YQ, Bian JS. All in the timing: a comparison between the cardioprotection induced by H2S preconditioning and post-infarction treatment. Eur. J. Pharmacol.616(1–3), 160–165 (2009).
  • Zhuo Y, Chen PF, Zhang AZ et al. Cardioprotective effect of hydrogen sulfide in ischemic reperfusion experimental rats and its influence on expression of survivin gene. Biol. Pharm. Bull.32(8), 1406–1410 (2009).
  • Calvert JW, Jha S, Gundewar S et al. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ. Res.105(4), 365–374 (2009).
  • Osipov RM, Robich MP, Feng J et al. Effect of hydrogen sulfide in a porcine model of myocardial ischemia–reperfusion: comparison of different administration regimens and characterization of the cellular mechanisms of protection. J. Cardiovasc. Pharmacol.54(4), 287–297 (2009).
  • Sodha NR, Clements RT, Feng J et al. The effects of therapeutic sulfide on myocardial apoptosis in response to ischemia–reperfusion injury. Eur. J. Cardiothorac. Surg.33(5), 906–913 (2008).
  • Bliksøen M, Kaljusto ML, Vaage J et al. Effects of hydrogen sulfide on ischaemia–reperfusion injury and ischaemic preconditioning in the isolated, perfused rat heart. Eur. J. Cardiothorac. Surg.34(2), 344–349 (2008).
  • Johansen D, Ytrehus K, Baxter GF. Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia–reperfusion injury – evidence for a role of KATP channels. Basic Res. Cardiol.101(1), 53–60 (2006).
  • Yong QC, Lee SW, Foo CS et al. Endogenous hydrogen sulfide mediates the cardioprotection induced by ischemic postconditioning. Am. J. Physiol. Heart Circ. Physiol.295(3), H1330–H1340 (2008).
  • Calvert JW, Coetzee WA, Lefer DJ. Novel insights into hydrogen sulfide-mediated cytoprotection. Antioxid. Redox Signal.12(10), 1203–1217 (2010).
  • Elrod JW, Calvert JW, Morrison J et al. Hydrogen sulfide attenuates myocardial ischemia–reperfusion injury by preservation of mitochondrial function. Proc. Natl Acad. Sci. USA104(39), 15560–15565 (2007).
  • Hua W, Jiang J, Rong X et al. The dual role of the cystathionine γ-lyase/hydrogen sulfide pathway in CVB3-induced myocarditis in mice. Biochem. Biophys. Res. Commun.388(3), 595–600 \ (2009).
  • Lowenstein CJ, Hill SL, Lafond-Walker A et al. Nitric oxide inhibits viral replication in murine myocarditis, J. Clin. Invest.97(8), 1837–1843 (1996).
  • Mishra PK, Tyagi N, Sen U et al. H2S ameliorates oxidative and proteolytic stresses and protects the heart against adverse remodeling in chronic heart failure. Am. J. Physiol. Heart Circ. Physiol.298(2), H451–H456 (2010).
  • Sen U, Vacek TP, Hughes WM et al. Cardioprotective role of sodium thiosulfate on chronic heart failure by modulating endogenous H2S generation. Pharmacology82(3), 201–213 (2008).
  • Chang L, Geng B, Yu F et al. Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids34(4), 573–585 (2007).
  • Yong QC, Hu LF, Wang S et al. Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl. Cardiovasc. Res.88(3), 482–491 (2010).
  • Mustafa AK, Gadalla MM, Sen N et al. H2S signals through protein S-sulfhydration. Sci. Signal.2(96), ra72 (2009).
  • Mustafa AK, Gadalla MM, Snyder SH. Signaling by gasotransmitters. Sci. Signal.2(68), re2 (2009).
  • Gadalla MM, Snyder SH. Hydrogen sulfide as a gasotransmitter. J. Neurochem.113(1), 14–26 (2010).
  • Forrester MT, Foster MW, Benhar M et al. Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic. Biol. Med.46(2), 119–126 (2009).
  • Hu LF, Lu M, Wu ZY et al. Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function. Mol. Pharmacol.75(1), 27–34 (2009).
  • Gao HM, Hong JS, Zhang W et al. Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci.22(3), 782–790 (2002).
  • Schreier SM, Muellner MK, Steinkellner H et al. Hydrogen sulfide scavenges the cytotoxic lipid oxidation product 4-HNE. Neurotox. Res.17(3), 249–256 (2010).
  • Butterfield DA, Reed T, Perluigi M et al. Elevated protein-bound levels of the lipid peroxidation product, 4-hydroxy-2-nonenal, in brain from persons with mild cognitive impairment. Neurosci. Lett.397(3), 170–173 (2006).
  • Tay AS, Hu LF, Lu M et al. Hydrogen sulfide protects neurons against hypoxic injury via stimulation of ATP-sensitive potassium channel/protein kinase C/extracellular signal-regulated kinase/heat shock protein 90 pathway. Neuroscience167(2), 277–286 (2010).
  • Hu LF, Lu M, Tiong CX et al. Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell9(2), 135–146 (2010).
  • Tang XQ, Yang CT, Chen J et al. Effect of hydrogen sulfide on β-amyloid-induced damage in PC12 cells. Clin. Exp. Pharmacol. Physiol.35(2), 180–186 (2008).
  • Yin WL, He JQ, Hu B et al. Hydrogen sulfide inhibits MPP+-induced apoptosis in PC12 cells. Life Sci.85(7–8), 269–275 (2009).
  • Tang XQ, Shen XT, Huang YE et al. Hydrogen sulfide antagonizes homocysteine-induced neurotoxicity in PC12 cells. Neurosci. Res.68(3), 241–249 (2010).
  • Lu M, Hu LF, Hu G et al. Hydrogen sulfide protects astrocytes against H2O2-induced neural injury via enhancing glutamate uptake. Free Radic. Biol. Med.45(12), 1705–1713 (2008).
  • Kimura Y, Dargusch R, Schubert D et al. Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid. Redox Signal.8(3–4), 661–670 (2006).
  • Zhang LM, Jiang CX, Liu DW. Hydrogen sulfide attenuates neuronal injury induced by vascular dementia via inhibiting apoptosis in rats. Neurochem. Res.34(11), 1984–1992 (2009).
  • Cheung NS, Peng ZF, Chen MJ et al. Hydrogen sulfide induced neuronal death occurs via glutamate receptor and is associated with calpain activation and lysosomal rupture in mouse primary cortical neurons. Neuropharmacology53(4), 505–514 (2007).
  • Selzner M, Rüdiger HA, Sindram D et al. Mechanisms of ischemic injury are different in the steatotic and normal rat liver. Hepatology32(6), 1280–1288 (2000).
  • Jiang H, Meng F, Li W et al. Splenectomy ameliorates acute multiple organ damage induced by liver warm ischemia reperfusion in rats. Surgery141(1), 32–40 (2007).
  • Kang K, Zhao M, Jiang H et al. Role of hydrogen sulfide in hepatic ischemia–reperfusion-induced injury in rats. Liver Transpl.15(10), 1306–1314 (2009).
  • Truong DH, Mihajlovic A, Gunness P et al. Prevention of hydrogen sulfide (H2S)-induced mouse lethality and cytotoxicity by hydroxocobalamin (vitamin B(12a)). Toxicology242(1–3), 16–22 (2007).
  • Tripatara P, Patel NS, Collino M et al. Generation of endogenous hydrogen sulfide by cystathionine γ-lyase limits renal ischemia/reperfusion injury and dysfunction. Lab. Invest.88(10), 1038–1048 (2008).
  • Xu Z, Prathapasinghe G, Wu N et al. Ischemia-reperfusion reduces cystathionine-β-synthase-mediated hydrogen sulfide generation in the kidney. Am. J. Physiol. Renal Physiol.297(1), F27–F35 (2009).
  • Hosgood SA, Nicholson ML. Hydrogen sulfide ameliorates ischaemia–reperfusion injury in an experimental model of non-heart-beating donor kidney transplantation. Br. J. Surg.97(2), 202–209 (2010).
  • Sen U, Basu P, Abe OA et al. Hydrogen sulfide ameliorates hyperhomocysteinemia-associated chronic renal failure. Am. J. Physiol. Renal Physiol.297(2), F410–F419 (2009).
  • Henderson PW, Weinstein AL, Sung J et al. Hydrogen sulfide attenuates ischemia–reperfusion injury in in vitro and in vivo models of intestine free tissue transfer. Plast. Reconstr. Surg.125(6), 1670–1678 (2010).
  • Huang Y, Li F, Tong W et al. Hydrogen sulfide, a gaseous transmitter, stimulates proliferation of interstitial cells of Cajal via phosphorylation of AKT protein kinase. Tohoku J. Exp. Med.221(2), 125–132 (2010).
  • Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev.84(3), 767–801 (2004).
  • Metharom P, Caplice NM. Vascular disease: a new progenitor biology. Curr. Vasc. Pharmacol.5(1), 61–68 (2007).
  • Yang G, Sun X, Wang R. Hydrogen sulfide-induced apoptosis of human aorta smooth muscle cells via the activation of mitogen-activated protein kinases and caspase-3. FASEB J.18(14), 1782–1784 (2004).
  • Yang G, Wu L, Wang R. Pro-apoptotic effect of endogenous H2S on human aorta smooth muscle cells. FASEB J.20(3), 553–555 (2006).
  • Du J, Hui Y, Cheung Y et al. The possible role of hydrogen sulfide as a smooth muscle cell proliferation inhibitor in rat cultured cells. Heart Vessels19(2), 75–80 (2004).
  • Meng QH, Yang G, Yang W et al. Protective effect of hydrogen sulfide on balloon injury-induced neointima hyperplasia in rat carotid arteries. Am. J. Pathol.170(4), 1406–1414 (2007).
  • Yan SK, Chang T, Wang H et al. Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells. Biochem. Biophys. Res. Commun.351(2), 485–491 (2006).
  • Yang G, Wu L, Bryan S et al. Cystathionine γ-lyase deficiency and overproliferation of smooth muscle cells. Cardiovasc. Res.86(3), 487–495 (2010).
  • Yang G, Wu L, Jiang B et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science322(5901), 587–590 (2008).
  • Li W, Jin HF, Liu D et al. Hydrogen sulfide induces apoptosis of pulmonary artery smooth muscle cell in rats with pulmonary hypertension induced by high pulmonary blood flow. Chin. Med. J.122(24), 3032–3038 (2009).
  • Baskar R, Sparatore A, Del Soldato P et al. Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative inhibit rat vascular smooth muscle cell proliferation. Eur. J. Pharmacol.594(1–3), 1–8 (2008).
  • Rossoni G, Sparatore A, Tazzari V et al. The hydrogen sulfide-releasing derivative of diclofenac protects against ischaemia–reperfusion injury in the isolated rabbit heart. Br. J. Pharmacol.153(1), 100–109 (2008).
  • Sidhapuriwala J, Li L, Sparatore A et al. Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative, on carrageenan-induced hindpaw oedema formation in the rat. Eur. J. Pharmacol.569(1–2), 149–154 (2007).
  • Baskar R, Li L, Moore PK. Hydrogen sulfide-induces DNA damage and changes in apoptotic gene expression in human lung fibroblast cells. FASEB J.21(1), 247–255 (2007).
  • Yaegaki K, Qian W, Murata T et al. Oral malodorous compound causes apoptosis and genomic DNA damage in human gingival fibroblasts. J. Periodontal Res.43(4), 391–399 (2008).
  • Imai T, Ii H, Yaegaki K et al. Oral malodorous compound inhibits osteoblast proliferation. J. Periodontol.80(12), 2028–2034 (2009).
  • Attene-Ramos MS, Nava GM, Muellner MG et al. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells. Environ. Mol. Mutagen.51(4), 304–314 (2010).
  • Gobbi G, Ricci F, Malinverno C et al. Hydrogen sulfide impairs keratinocyte cell growth and adhesion inhibiting mitogen-activated protein kinase signaling. Lab. Invest.89(9), 994–1006 (2009).
  • Zanardo RC, Brancaleone V, Distrutti E et al. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J.20(12), 2118–2120 (2006).
  • Zhang H, Hegde A, Ng SW et al. Hydrogen sulfide up-regulates substance P in polymicrobial sepsis-associated lung injury. J. Immunol.179(6), 4153–4160 (2007).
  • Valitutti S, Castellino F, Musiani P. Effect of sulfurous (thermal) water on T lymphocyte proliferative response. Ann. Allergy65(6), 463–468 (1990).
  • Mariggiò MA, Minunno V, Riccardi S et al. Sulfide enhancement of PMN apoptosis. Immunopharmacol. Immunotoxicol.20(3), 399–408 (1998).
  • Mirandola P, Gobbi G, Sponzilli I et al. Exogenous hydrogen sulfide induces functional inhibition and cell death of cytotoxic lymphocytes subsets. J. Cell Physiol.213(3), 826–833 (2007).
  • Huang XL, Zhou XH, Zhou JL et al. Role of polymorphonuclear neutrophil in exogenous hydrogen sulfide attenuating endotoxin-induced acute lung injury. Sheng Li Xue Bao61(4), 356–360 (2009).
  • Rinaldi L, Gobbi G, Pambianco M et al. Hydrogen sulfide prevents apoptosis of human PMN via inhibition of p38 and caspase 3. Lab. Invest.86(4), 391–397 (2006).
  • Spiller F, Orrico MI, Nascimento DC et al. Hydrogen sulfide improves neutrophil migration and survival in sepsis via K+ATP channel activation. Am. J. Respir. Crit. Care Med.182(3), 360–368 (2010).
  • London SJ, Yuan JM, Chung FL et al. Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: a prospective study of men in Shanghai, China. Lancet356(9231), 724–729 (2000).
  • Giovannucci E, Rimm EB, Liu Y et al. A prospective study of cruciferous vegetables and prostate cancer. Cancer Epidemiol. Biomarkers Prev.12(12), 1403–1409 (2003).
  • Seow A, Yuan JM, Sun CL et al. Dietary isothiocyanates, glutathione S transferase polymorphisms and colorectal cancer risk in the Singapore Chinese Health Study. Carcinogenesis23(12), 2055–2061 (2002).
  • Cohen JH, Kristal AR, Stanford JL. Fruit and vegetable intakes and prostate cancer risk. J. Natl. Cancer Inst.92(1), 61–68 (2000).
  • Arunkumar A, Vijayababu MR, Gunadharini N et al. Induction of apoptosis and histone hyperacetylation by diallyl disulfide in prostate cancer cell line PC-3. Cancer Lett.251(1), 59–67 (2007).
  • Nian H, Delage B, Ho E et al. Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ. Mol. Mutagen.50(3), 213–221 (2009).
  • Howard EW, Ling MT, Chua CW et al. Garlic-derived S-allylmercaptocysteine is a novel in vivo antimetastatic agent for androgen-independent prostate cancer. Clin. Cancer Res.13(6), 1847–1856 (2007).
  • Singh SV, Warin R, Xiao D et al. Sulforaphane inhibits prostate carcinogenesis and pulmonary metastasis in TRAMP mice in association with increased cytotoxicity of natural killer cells. Cancer Res.69(5), 2117–2125 (2009).
  • Benavides GA, Squadrito GL, Mills RW et al. Hydrogen sulfide mediates the vasoactivity of garlic. Proc. Natl Acad. Sci. USA104(46), 17977–17982 (2007).
  • Wang Q, Liu HR, Mu Q et al.S-propargyL-cysteine protects both adult rat hearts and neonatal cardiomyocytes from ischemia/hypoxia injury: the contribution of the hydrogen sulfide-mediated pathway. J. Cardiovasc. Pharmacol.54(2), 139–146 (2009).
  • Gerhauser C, You M, Liu J et al. Cancer chemopreventive potential of sulforamate, a novel analogue of sulforaphane that induces Phase 2 drug-metabolizing enzymes. Cancer Res.57(2), 272–278 (1997).
  • Zhang Y, Kensler TW, Cho CG et al. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc. Natl Acad. Sci. USA91(8), 3147–3150 (1994).
  • Fahey JW, Haristoy X, Dolan PM et al. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc. Natl Acad. Sci. USA99(11), 7610–7615 (2002).
  • Hu R, Xu C, Shen G et al. Gene expression profiles induced by cancer chemopreventive isothiocyanate sulforaphane in the liver of C57BL/6J mice and C57BL/6J/Nrf2-/- mice. Cancer Lett.243(2), 170–192 (2006).
  • Keum YS, Jeong WS, Kong AN. Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat. Res.555(1–2), 191–202 (2004).
  • Cao Q, Zhang L, Yang G et al. Butyrate-stimulated H2S production in colon cancer cells. Antioxid. Redox Signal.12(9), 1101–1109 (2010).
  • Cai WJ, Wang MJ, Ju LH et al. Hydrogen sulfide induces human colon cancer cell proliferation: role of Akt, ERK and p21. Cell Biol. Int.34(6), 365–372 (2010).
  • Yang G, Yang W, Wu L et al. H2S, endoplasmic reticulum stress, and apoptosis of insulin-secreting β cells. J. Biol. Chem.282(22), 16567–16776 (2007).
  • Wu L, Yang W, Jia X et al. Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats. Lab. Invest.89(1), 59–67 (2009).
  • Yusuf M, Kwong Huat BT, Hsu A et al. Streptozotocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulfide biosynthesis. Biochem. Biophys. Res. Commun.333(4), 1146–1152 (2005).
  • Wijekoon EP, Hall B, Ratnam S et al. Homocysteine metabolism in ZDF (Type 2) diabetic rats. Diabetes54(11), 3245–3251 (2005).
  • Caliendo G, Cirino G, Santagada V et al. Synthesis and biological effects of hydrogen sulfide (H2S): development of H2S-releasing drugs as pharmaceuticals. J. Med. Chem.53(17), 6275–6286 (2010).
  • Li L, Whiteman M, Guan YY et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation117(18), 2351–2360 (2008).
  • Rossoni G, Sparatore A, Tazzari V et al. The hydrogen sulfide-releasing derivative of diclofenac protects against ischaemia–reperfusion injury in the isolated rabbit heart. Br. J. Pharmacol.153(1), 100–109 (2008).
  • Fiorucci S, Orlandi S, Mencarelli A et al. Enhanced activity of a hydrogen sulfide-releasing derivative of mesalamine (ATB-429) in a mouse model of colitis. Br. J. Pharmacol.150(8), 996–1002 (2007).
  • Wallace JL, Caliendo G, Santagada V et al. Gastrointestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology132(1), 261–271 (2007).
  • Distrutti E, Sediari L, Mencarelli A et al. 5-amino-2-hydroxybenzoic acid 4-(5-thioxo-5H-[1,2]dithiol-3yl)-phenyl ester (ATB-429), a hydrogen sulfide-releasing derivative of mesalamine, exerts antinociceptive effects in a model of postinflammatory hypersensitivity. J. Pharmacol. Exp. Ther.319(1), 447–458 (2006).
  • Zhu XY, Liu SJ, Liu YJ et al. Glucocorticoids suppress cystathionine γ-lyase expression and H2S production in lipopolysaccharide-treated macrophages. Cell. Mol. Life Sci.67(7), 1119–1132 (2010).
  • Yang W, Yang G, Jia X et al. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J. Physiol.569(Pt 2), 519–531 (2005).
  • Cao Y, Adhikari S, Ang AD et al. Mechanism of induction of pancreatic acinar cell apoptosis by hydrogen sulfide. Am. J. Physiol. Cell Physiol.291(3), C503–C510 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.