84
Views
9
CrossRef citations to date
0
Altmetric
Review

Current perspectives on the modulation of thermo-TRP channels: new advances and therapeutic implications

, &
Pages 687-704 | Published online: 10 Jan 2014

References

  • Sherrington CS. The Integrative Action of the Nervous System. Scribner, NY, USA (1906).
  • Wood JN, Perl ER. Pain. Curr. Opin. Genet. Dev.9, 328–332 (1999).
  • Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science288, 1765–1769 (2000).
  • Montell C. The TRP superfamily of cation channels. Sci. STKE re3 (2005).
  • Talavera K, Yasumatsu K, Voets T et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature438, 1022–1025 (2005).
  • Cesare P, McNaughton PA. A novel heat-activated current in nociceptive neurons, and its sensitization by bradykinin. Proc. Natl Acad. Sci. USA93, 15435–15439 (1996).
  • Caterina MJ, Schumacher MA, Tominaga M et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature389, 816–824 (1997).
  • Oh U, Sun WH, Kim D. Capsaicin activates a nonselective cation channel in cultured neonatal rat dorsal root ganglion neurons. J. Neurosci.16, 1659–1667 (1996).
  • Jung J, Sun WH, Kwak J et al. Capsaicin binds to the intracellular domain of the capsaicin-activated ion channel. J. Neuroscience19, 529–538 (1999).
  • Tominaga M, Caterina MJ, Malmberg AB et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron21, 531–543 (1998).
  • Zhu MX. Understanding the role of voltage gating of polymodal TRP channels. J. Physiol.585, 321–322 (2007).
  • Voets T, Droogmans G, Wissenbach U et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature430, 748–754 (2004).
  • Bonnington JK, McNaughton PA. Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor. J. Physiol.551, 433–446 (2003).
  • Tominaga M, Wada M, Masu M. Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc. Natl Acad. Sci. USA98, 6951–6956 (2001).
  • Vellani V, Mapplebeck S, Moriondo A, Davis JB, McNaughton PA. Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by capsaicin, protons, heat and anandamide. J. Physiol.534, 813–825 (2001).
  • Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci.24, 487–517 (2001).
  • Ryu S, Liu B, Qin F. Low pH potentiates both capsaicin binding and channel gating of VR1 receptors. J. Gen. Physiol.122, 45–61 (2003).
  • Trevisani M, Smart D, Gunthorpe MJ et al. Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat. Neurosci.5 (6), 546–551 (2002).
  • Ross RA. Anandamide and vanilloid TRPV1 receptors. Br. J. Pharmacol.140, 790–801 (2003).
  • Hwang SW, Cho H, Kwak J et al. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl Acad. Sci. USA97, 6155–6160 (2000).
  • Caterina MJ, Leffler A, Malmberg AB et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science288, 306–313 (2000).
  • Davis JB, Gray J, Gunthorpe MJ et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature405, 183–187 (2000).
  • Moriyama T, Higashi T, Togashi K et al. Sensitization of TRPV1 by EP1 and IP reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain1, 3 (2005).
  • Caterina MJ. Vanilloid receptors take a TRP beyond the sensory afferent. Pain105, 5–9 (2003).
  • Caterina MJ, Julius D. Sense and specificity: a molecular identity for nociceptors. Curr. Opin. Neurobiol.9, 525–530 (1999).
  • Bender FL, Mederos YS, Li Y et al. The temperature-sensitive ion channel TRPV2 is endogenously expressed and functional in the primary sensory cell line F-11. Cell Physiol. Biochem.15, 183–194 (2005).
  • Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature398, 436–441 (1999).
  • Muraki K, Iwata Y, Katanosaka Y et al. TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ. Res.93, 829–838 (2003).
  • Hu HZ, Gu Q, Wang C et al. 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J. Biol. Chem.279, 35741–35748 (2004).
  • Qin N, Neeper MP, Liu Y et al. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J. Neurosci.28, 6231–6238 (2008).
  • Shimosato G, Amaya F, Ueda M et al. Peripheral inflammation induces up-regulation of TRPV2 expression in rat DRG. Pain119, 225–232 (2005).
  • Frederick J, Buck ME, Matson DJ, Cortright DN. Increased TRPA1, TRPM8, and TRPV2 expression in dorsal root ganglia by nerve injury. Biochem. Biophys. Res. Commun.358, 1058–1064 (2007).
  • Park U, Vastani N, Guan Y, Srinivasa NR, Koltzenburg M, Caterina MJ. Evaluation of TRPV2 function in mouse thermal nociception. Presented at: 12th World Congress on Pain. Glasgow, Scotland, 17–22 August 2008.
  • Peier AM, Reeve AJ, Andersson DA et al. A heat-sensitive TRP channel expressed in keratinocytes. Science296, 2046–2049 (2002).
  • Smith GD, Gunthorpe MJ, Kelsell RE et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature418, 186–190 (2002).
  • Xu H, Ramsey IS, Kotecha SA et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature418, 181–186 (2002).
  • Watanabe H, Vriens J, Suh SH et al. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J. Biol. Chem.277, 47044–47051 (2002).
  • Lee H, Caterina MJ. TRPV channels as thermosensory receptors in epithelial cells. Pflugers Arch.451 (1),160–167 (2005).
  • Moqrich A, Hwang SW, Earley TJ et al. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science307, 1468–1472 (2005).
  • Todaka H, Taniguchi J, Satoh J, Mizuno A, Suzuki M. Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J. Biol. Chem.279, 35133–35138 (2004).
  • Xu H, Delling M, Jun JC, Clapham DE. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat. Neurosci.9, 628–635 (2006).
  • Zimmermann K, Leffler A, Fischer MM et al. The TRPV1/2/3 activator 2-aminoethoxydiphenyl borate sensitizes native nociceptive neurons to heat in wildtype but not TRPV1 deficient mice. Neuroscience135, 1277–1284 (2005).
  • Watanabe H, Davis JB, Smart D et al. Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J. Biol. Chem.277, 13569–13577 (2002).
  • Fan HC, Zhang X, McNaughton PA. Activation of the TRPV4 ion channel is enhanced by phosphorylation. J. Biol. Chem.284, 27884–27891 (2009).
  • Smith PL, Maloney KN, Pothen RG, Clardy J, Clapham DE. Bisandrographolide from Andrographispaniculata activates TRPV4 channels. J. Biol. Chem.281, 29897–29904 (2006).
  • Mandadi S, Sokabe T, Shibasaki K et al. TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Arch.458, 1093–1102 (2009).
  • Gevaert T, Vriens J, Segal A et al. Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J. Clin. Invest.117, 3453–3462 (2007).
  • Huang SM, Lee H, Chung MK et al. Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J. Neurosci.28, 13727–13737 (2008).
  • Alessandri-Haber N, Joseph E, Dina OA, Liedtke W, Levine JD. TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain118, 70–79 (2005).
  • Nilius B, Voets T. TRP channels: a TR (I)P through a world of multifunctional cation channels. Pflugers Arch.451, 1–10 (2005).
  • Peier AM, Moqrich A, Hergarden AC et al. A TRP channel that senses cold stimuli and menthol. Cell108, 705–715 (2002).
  • McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature416, 52–58 (2002).
  • De la Pena E, Malkia A, Cabedo H, Belmonte C, Viana F. The contribution of TRPM8 channels to cold sensing in mammalian neurones. J. Physiol.567, 415–426 (2005).
  • Chuang HH, Neuhausser WM, Julius D. The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron43, 859–869 (2004).
  • Reid G, Babes A, Pluteanu F. A cold- and menthol-activated current in rat dorsal root ganglion neurones: properties and role in cold transduction. J. Physiol.545, 595–614 (2002).
  • Okazawa M, Inoue W, Hori A et al. Noxious heat receptors present in cold-sensory cells in rats. Neurosci. Lett.359, 33–36 (2004).
  • Babes A, Zorzon D, Reid G. Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor. Eur. J. Neurosci.20, 2276–2282 (2004).
  • Dhaka A, Murray AN, Mathur J et al. TRPM8 is required for cold sensation in mice. Neuron54, 371–378 (2007).
  • Colburn RW, Lubin ML, Stone DJ Jr et al. Attenuated cold sensitivity in TRPM8 null mice. Neuron54, 379–386 (2007).
  • Bautista DM, Siemens J, Glazer JM et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature448, 204–208 (2007).
  • Story GM, Peier AM, Reeve AJ et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell112, 819–829 (2003).
  • Kwan KY, Allchorne AJ, Vollrath MA et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron50, 277–289 (2006).
  • Bautista DM, Jordt SE, Nikai T et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell124, 1269–1282 (2006).
  • Karashima Y, Talavera K, Everaerts W et al. TRPA1 acts as a cold sensor in vitro and in vivo. Proc. Natl Acad. Sci. USA106, 1273–1278 (2009).
  • Fajardo O, Meseguer V, Belmonte C, Viana F. TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: pharmacological and genetic evidence. J. Neurosci.28, 7863–7875 (2008).
  • Belmonte C, Brock JA, Viana F. Converting cold into pain. Exp. Brain Res.196, 13–30 (2009).
  • Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA. Direct activation of the ion channel TRPA1 by Ca2+. Nat. Neurosci.10, 277–279 (2007).
  • Doerner JF, Gisselmann G, Hatt H, Wetzel CH. Transient receptor potential channel A1 is directly gated by calcium ions. J. Biol. Chem.282, 13180–13189 (2007).
  • Reid G. ThermoTRP channels and cold sensing: what are they really up to? Pflugers Arch.451, 250–263 (2005).
  • McNamara CR, Mandel-Brehm J, Bautista DM et al. TRPA1 mediates formalin-induced pain. Proc. Natl Acad. Sci. USA104, 13525–13530 (2007).
  • Obata K, Katsura H, Mizushima T et al. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J. Clin. Invest.115, 2393–2401 (2005).
  • Katsura H, Obata K, Mizushima T et al. Activation of Src-family kinases in spinal microglia contributes to mechanical hypersensitivity after nerve injury. J. Neurosci.26, 8680–8690 (2006).
  • Katsura H, Tsuzuki K, Noguchi K, Sakagami M. Differential expression of capsaicin-, menthol-, and mustard oil-sensitive receptors in naive rat geniculate ganglion neurons. Chem. Senses31, 681–688 (2006).
  • Katsura H, Obata K, Mizushima T et al. Antisense knock down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp. Neurol.200, 112–123 (2006).
  • Gracheva EO, Ingolia NT, Kelly YM et al. Molecular basis of infrared detection by snakes. Nature464, 1006–1011 (2010).
  • Bautista DM, Movahed P, Hinman A et al. Pungent products from garlic activate the sensory ion channel TRPA1. Proc. Natl Acad. Sci. USA102, 12248–12252 (2005).
  • Bandell M, Story GM, Hwang SW et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron41, 849–857 (2004).
  • Hinman A, Chuang HH, Bautista DM, Julius D. TRP channel activation by reversible covalent modification. Proc. Natl Acad. Sci. USA103, 19564–19568 (2006).
  • Macpherson LJ, Dubin AE, Evans MJ et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature445, 541–545 (2007).
  • Hu H, Tian J, Zhu Y et al. Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. Pflugers Arch.459, 579–592 (2010).
  • Karashima Y, Damann N, Prenen J et al. Bimodal action of menthol on the transient receptor potential channel TRPA1. J. Neurosci.27, 9874–9884 (2007).
  • Dhaka A, Viswanath V, Patapoutian A. TRP ion channels and temperature sensation. Annu. Rev. Neurosci.29, 135–161 (2006).
  • Corey DP, Garcia-Anoveros J, Holt JR et al. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature432, 723–730 (2004).
  • Huang J, Zhang X, McNaughton PA. Modulation of temperature-sensitive TRP channels. Semin. Cell Dev. Biol.17, 638–645 (2006).
  • Bhave G, Hu HJ, Glauner KS et al. Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl Acad. Sci. USA100, 12480–12485 (2003).
  • Mandadi S, Tominaga T, Numazaki M et al. Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCe-mediated phosphorylation at S800. Pain123, 106–116 (2006).
  • Numazaki M, Tominaga T, Toyooka H, Tominaga M. Direct phosphorylation of capsaicin receptor VR1 by protein kinase Ce and identification of two target serine residues. J. Biol. Chem.277, 13375–13378 (2002).
  • Studer M, McNaughton PA. Modulation of single-channel properties of TRPV1 by phosphorylation. J. Physiol. (2010) (In press).
  • Rathee PK, Distler C, Obreja O et al. PKA/AKAP/VR-1 module: a common link of Gs-mediated signaling to thermal hyperalgesia. J. Neurosci.22, 4740–4745 (2002).
  • Lopshire JC, Nicol GD. The cAMP transduction cascade mediates the prostaglandin E2 enhancement of the capsaicin-elicited current in rat sensory neurons: whole-cell and single-channel studies. J. Neurosci.18, 6081–6092 (1998).
  • Bhave G, Zhu W, Wang H et al. cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron35, 721–731 (2002).
  • Zhang X, Li L, McNaughton PA. Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron59, 450–461 (2008).
  • Jeske NA, Patwardhan AM, Ruparel NB et al. A-kinase anchoring protein 150 controls protein kinase C-mediated phosphorylation and sensitization of TRPV1. Pain146, 301–307 (2009).
  • Premkumar LS, Ahern GP. Induction of vanilloid receptor channel activity by protein kinase C. Nature408, 985–990 (2000).
  • Xu F, Satoh E, Iijima T. Protein kinase C-mediated Ca2+ entry in HEK 293 cells transiently expressing human TRPV4. Br. J. Pharmacol.140, 413–421 (2003).
  • Xu H, Zhao H, Tian W et al. Regulation of a transient receptor potential (TRP) channel by tyrosine phosphorylation. SRC family kinase-dependent tyrosine phosphorylation of TRPV4 on TYR-253 mediates its response to hypotonic stress. J. Biol. Chem.278, 11520–11527 (2003).
  • Wegierski T, Lewandrowski U, Muller B, Sickmann A, Walz G. Tyrosine phosphorylation modulates the activity of TRPV4 in response to defined stimuli. J. Biol. Chem.284, 2923–2933 (2009).
  • Stokes AJ, Shimoda LM, Koblan-Huberson M, Adra CN, Turner H. A TRPV2-PKA signaling module for transduction of physical stimuli in mast cells. J. Exp. Med.200, 137–147 (2004).
  • Penna A, Juvin V, Chemin J et al. PI3-kinase promotes TRPV2 activity independently of channel translocation to the plasma membrane. Cell Calcium39, 495–507 (2006).
  • Xu H, Delling M, Jun JC, Clapham DE. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat. Neurosci.9, 628–635 (2006).
  • Premkumar LS, Raisinghani M, Pingle SC, Long C, Pimentel F. Downregulation of transient receptor potential melastatin 8 by protein kinase C-mediated dephosphorylation. J. Neurosci.25, 11322–11329 (2005).
  • Linte RM, Ciobanu C, Reid G, Babes A. Desensitization of cold- and menthol-sensitive rat dorsal root ganglion neurones by inflammatory mediators. Exp. Brain Res.178 (1), 89–98 (2006).
  • Bavencoffe A, Gkika D, Kondratskyi A et al. The transient receptor potential channel TRPM8 is inhibited via the a 2A adrenoreceptor signaling pathway. J. Biol. Chem.285, 9410–9419 (2010).
  • Wang YY, Chang RB, Waters HN, McKemy DD, Liman ER. The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J. Biol. Chem.283, 32691–32703 (2008).
  • Schmidt M, Dubin AE, Petrus MJ, Earley TJ, Patapoutian A. Nociceptive signals induce trafficking of TRPA1 to the plasma membrane. Neuron64, 498–509 (2009).
  • Dai Y, Wang S, Tominaga M et al. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J. Clin. Invest.117, 1979–1987 (2007).
  • Kim D, Cavanaugh EJ, Simkin D. Inhibition of transient receptor potential A1 channel by phosphatidylinositol-4,5-bisphosphate. Am. J. Physiol. Cell Physiol.295, C92–C99 (2008).
  • Karashima Y, Prenen J, Meseguer V et al. Modulation of the transient receptor potential channel TRPA1 by phosphatidylinositol 4,5-biphosphate manipulators. Pflugers Arch.457, 77–89 (2008).
  • Farinas I. Neurotrophin actions during the development of the peripheral nervous system. Microsc. Res. Tech.45, 233–242 (1999).
  • Lewin GR, Barde YA. Physiology of the neurotrophins. Annu. Rev. Neurosci.289–317 (1996).
  • Weskamp G, Otten U. An enzyme-linked immunoassay for nerve growth factor (NGF): a tool for studying regulatory mechanisms involved in NGF production in brain and in peripheral tissues. J. Neurochem.48, 1779–1786 (1987).
  • Lewin GR, Ritter AM, Mendell LM. Nerve growth factor-induced hyperalgesia in the neonatal and adult rat. J. Neurosci.13, 2136–2148 (1993).
  • Lewin GR, Rueff A, Mendell LM. Peripheral and central mechanisms of NGF-induced hyperalgesia. Eur. J. Neurosci.6, 1903–1912 (1994).
  • Pezet S, Krzyzanowska A, Wong LF et al. Reversal of neurochemical changes and pain-related behavior in a model of neuropathic pain using modified lentiviral vectors expressing GDNF. Mol. Ther.13, 1101–1109 (2006).
  • McMahon SB, Armanini MP, Ling LH, Phillips HS. Expression and coexpression of TRK receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets. Neuron12, 1161–1171 (1994).
  • Kobayashi K, Fukuoka T, Obata K et al. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J. Comp. Neurol.493, 596–606 (2005).
  • Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron36, 57–68 (2002).
  • Zhang X, Huang J, McNaughton PA. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J.24, 4211–4223 (2005).
  • Stein AT, Ufret-Vincenty CA, Hua L, Santana LF, Gordon SE. Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J. Gen. Physiol.128, 509–522 (2006).
  • Zhu W, Oxford GS. Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1. Mol. Cell. Neurosci.34, 689–700 (2007).
  • Van Buren JJ, Bhat S, Rotello R, Pauza ME, Premkumar LS. Sensitization and translocation of TRPV1 by insulin and IGF-I. Mol. Pain1, 17 (2005).
  • Kanzaki M, Zhang YQ, Mashima H et al. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat. Cell Biol.1, 165–170 (1999).
  • Boels K, Glassmeier G, Herrmann D et al. The neuropeptide head activator induces activation and translocation of the growth-factor-regulated Ca (2+)-permeable channel GRC. J. Cell Sci.114, 3599–3606 (2001).
  • Hisanaga E, Nagasawa M, Ueki K et al. Regulation of calcium-permeable TRPV2 channel by insulin in pancreatic β-cells. Diabetes58, 174–184 (2009).
  • Airaksinen MS, Titievsky A, Saarma M. GDNF family neurotrophic factor signaling: four masters, one servant? Mol. Cell. Neurosci.13, 313–325 (1999).
  • Albers KM, Woodbury CJ, Ritter AM, Davis BM, Koerber HR. Glial cell-line-derived neurotrophic factor expression in skin alters the mechanical sensitivity of cutaneous nociceptors. J. Neurosci.26, 2981–2990 (2006).
  • Malin SA, Molliver DC, Koerber HR et al. Glial cell line-derived neurotrophic factor family members sensitize nociceptors in vitro and produce thermal hyperalgesia in vivo. J. Neurosci.26, 8588–8599 (2006).
  • Gunthorpe MJ, Chizh BA. Clinical development of TRPV1 antagonists: targeting a pivotal point in the pain pathway. Drug Discov. Today14, 56–67 (2009).
  • Szallasi A, Cortright DN, Blum CA, Eid SR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat. Rev. Drug Discov.6, 357–372 (2007).
  • Wong GY, Gavva NR. Therapeutic potential of vanilloid receptor TRPV1 agonists and antagonists as analgesics: recent advances and setbacks. Brain Res. Rev.60, 267–277 (2009).
  • Kym PR, Kort ME, Hutchins CW. Analgesic potential of TRPV1 antagonists. Biochem. Pharmacol.78, 211–216 (2009).
  • Gomtsyan A, Faltynek CR. Vanilloid Receptor TRPV1 in Drug Discovery. Hoboken NJ (Ed.). John Wiley & Sons, NJ, USA (2010).
  • Cui M, Honore P, Zhong C et al. TRPV1 receptors in the CNS play a key role in broad-spectrum analgesia of TRPV1 antagonists. J. Neurosci. 26, 9385–9393 (2006).
  • Gibson HE, Edwards JG, Page RS, Van Hook MJ, Kauer JA. TRPV1 channels mediate long-term depression at synapses on hippocampal interneurons. Neuron57, 746–759 (2008).
  • Marsch R, Foeller E, Rammes G et al. Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J. Neurosci.27, 832–839 (2007).
  • Huang SM, Lee H, Chung MK et al. Overexpressed transient receptor potential vanilloid 3 ion channels in skin keratinocytes modulate pain sensitivity via prostaglandin E2. J. Neurosci.28, 13727–13737 (2008).
  • Gavva NR, Treanor JJ, Garami A et al. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain136, 202–210 (2008).
  • Gavva NR, Bannon AW, Surapaneni S et al. The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J. Neurosci.27, 3366–3374 (2007).
  • Steiner AA, Turek VF, Almeida MC et al. Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors. J. Neurosci.27, 7459–7468 (2007).
  • Lehto SG, Tamir R, Deng H et al. Antihyperalgesic effects of (R,E)-N- (2-hydroxy-2,3-dihydro-1H-inden-4-yl)-3- (2- (piperidin-1-yl)-4- (tri fluoromethyl)phenyl)-acrylamide (AMG8562), a novel transient receptor potential vanilloid type 1 modulator that does not cause hyperthermia in rats. J. Pharmacol. Exp. Ther.326, 218–229 (2008).
  • Backonja MM. Defining neuropathic pain. Anesth. Analg.97, 785–790 (2003).
  • Culshaw AJ, Bevan S, Christiansen M et al. Identification and biological characterization of 6-aryl-7-isopropylquinazolinones as novel TRPV1 antagonists that are effective in models of chronic pain. J. Med. Chem.49, 471–474 (2006).
  • Ghilardi JR, Rohrich H, Lindsay TH et al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J. Neurosci.25, 3126–3131 (2005).
  • Honore P, Wismer CT, Mikusa J et al. A-425619 [1-isoquinolin-5-yl-3- (4-trifluoromethyl-benzyl)-urea], a novel transient receptor potential type V1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J. Pharmacol. Exp. Ther.314, 410–421 (2005).
  • Jakab B, Helyes Z, Varga A et al. Pharmacological characterization of the TRPV1 receptor antagonist JYL1421 (SC0030) in vitro and in vivo in the rat. Eur. J. Pharmacol.517, 35–44 (2005).
  • Pomonis JD, Harrison JE, Mark L et al.N- (4-tertiarybutylphenyl)-4- (3-cholorphyridin-2-yl)tetrahydropyrazine -1 (2H)-carbox-amide (BCTC), a novel, orally effective vanilloid receptor 1 antagonist with analgesic properties: II. In vivo characterization in rat models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther.306, 387–393 (2003).
  • Walker KM, Urban L, Medhurst SJ et al. The VR1 antagonist capsazepine reverses mechanical hyperalgesia in models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther.304, 56–62 (2003).
  • Bianchi BR, El Kouhen R, Neelands TR et al. [3H]A-778317 [1- ( (R)-5-tert-butyl-indan-1-yl)-3-isoquinolin-5-yl-urea]: a novel, stereoselective, high-affinity antagonist is a useful radioligand for the human transient receptor potential vanilloid-1 (TRPV1) receptor. J. Pharmacol. Exp. Ther.323, 285–293 (2007).
  • Bianchi BR, El Kouhen R, Chen J, Puttfarcken PS. Binding of [ (3)H]A-778317 to native transient receptor potential vanilloid-1 (TRPV1) channels in rat dorsal root ganglia and spinal cord. Eur. J. Pharmacol.633, 15–23 (2010).
  • Gomtsyan A, Bayburt EK, Schmidt RG et al. Identification of (R)-1- (5-tert-butyl-2,3-dihydro-1H-inden-1-yl)-3- (1H-indazol-4-yl)urea (ABT-102) as a potent TRPV1 antagonist for pain management. J. Med. Chem.51, 392–395 (2008).
  • Doherty EM, Fotsch C, Bannon AW et al. Novel vanilloid receptor-1 antagonists: 2. Structure-activity relationships of 4-oxopyrimidines leading to the selection of a clinical candidate. J Med. Chem.50, 3515–3527 (2007).
  • Crutchlow M. Pharmacologic inhibition of TRPV1 impairs sensation of potentially injurious heat in healthy subjects. Presented at: ASCPT 2009 Annual Meeting. MD, USA, 18–21 March 2009.
  • Honore P, Chandran P, Hernandez G et al. Repeated dosing of ABT-102, a potent and selective TRPV1 antagonist, enhances TRPV1-mediated analgesic activity in rodents, but attenuates antagonist-induced hyperthermia. Pain142, 27–35 (2009).
  • Wang HL, Katon J, Balan C et al. Novel vanilloid receptor-1 antagonists: 3. The identification of a second-generation clinical candidate with improved physicochemical and pharmacokinetic properties. J. Med. Chem.50, 3528–3539 (2007).
  • Klionsky L, Tamir R, Gao B et al. Species-specific pharmacology of trichloro (sulfanyl)ethyl benzamides as transient receptor potential ankyrin 1 (TRPA1) antagonists. Mol. Pain3, 39 (2007).
  • Tamayo N, Liao H, Stec MM et al. Design and synthesis of peripherally restricted transient receptor potential vanilloid 1 (TRPV1) antagonists. J. Med. Chem.51, 2744–2757 (2008).
  • Gunthorpe MJ, Hannan SL, Smart D et al. Characterization of SB-705498, a potent and selective vanilloid receptor-1 (VR1/TRPV1) antagonist that inhibits the capsaicin-, acid-, and heat-mediated activation of the receptor. J. Pharmacol. Exp. Ther.321, 1183–1192 (2007).
  • Rami HK, Thompson M, Wyman P et al. Discovery of small molecule antagonists of TRPV1. Bioorg. Med. Chem. Lett.14, 3631–3634 (2004).
  • Rami HK, Thompson M, Stemp G et al. Discovery of SB-705498: a potent, selective and orally bioavailable TRPV1 antagonist suitable for clinical development. Bioorg. Med. Chem. Lett.16, 3287–3291 (2006).
  • Chizh BA, O’Donnell MB, Napolitano A et al. The effects of the TRPV1 antagonist SB-705498 on TRPV1 receptor-mediated activity and inflammatory hyperalgesia in humans. Pain132, 132–141 (2007).
  • Charrua A, Cruz CD, Narayanan S et al. GRC-6211, a new oral specific TRPV1 antagonist, decreases bladder overactivity and noxious bladder input in cystitis animal models. J. Urol.181, 379–386 (2009).
  • Jeske NA, Diogenes A, Ruparel NB et al. A-kinase anchoring protein mediates TRPV1 thermal hyperalgesia through PKA phosphorylation of TRPV1. Pain138, 604–616 (2008).
  • Schnizler K, Shutov LP, Van Kanegan MJ et al. Protein kinase A anchoring via AKAP150 is essential for TRPV1 modulation by forskolin and prostaglandin E2 in mouse sensory neurons. J. Neurosci.28, 4904–4917 (2008).
  • Novakova-Tousova K, Vyklicky L, Susankova K et al. Functional changes in the vanilloid receptor subtype 1 channel during and after acute desensitization. Neuroscience149, 144–154 (2007).
  • Backonja MM, Walk D, Edwards RR et al. Quantitative sensory testing in measurement of neuropathic pain phenomena and other sensory abnormalities. Clin. J. Pain25, 641–647 (2009).
  • Simpson DM, Brown S, Tobias J. Controlled trial of high-concentration capsaicin patch for treatment of painful HIV neuropathy. Neurology70, 2305–2313 (2008).
  • Chung MK, Guler AD, Caterina MJ. TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat. Neurosci.11, 555–564 (2008).
  • Binshtok AM, Bean BP, Woolf CJ. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature449, 607–610 (2007).
  • Juvin V, Penna A, Chemin J, Lin YL, Rassendren FA. Pharmacological characterization and molecular determinants of the activation of transient receptor potential V2 channel orthologs by 2-aminoethoxydiphenyl borate. Mol. Pharmacol.72, 1258–1268 (2007).
  • Neeper MP, Liu Y, Hutchinson TL et al. Activation properties of heterologously expressed mammalian TRPV2: evidence for species dependence. J. Biol. Chem.282, 15894–15902 (2007).
  • Nagasawa M, Nakagawa Y, Tanaka S, Kojima I. Chemotactic peptide fMetLeuPhe induces translocation of the TRPV2 channel in macrophages. J. Cell Physiol.210, 692–702 (2007).
  • Leffler A, Linte RM, Nau C, Reeh P, Babes A. A high-threshold heat-activated channel in cultured rat dorsal root ganglion neurons resembles TRPV2 and is blocked by gadolinium. Eur. J. Neurosci.26, 12–22 (2007).
  • Stotz SC, Vriens J, Martyn D, Clardy J, Clapham DE. Citral sensing by transient [corrected] receptor potential channels in dorsal root ganglion neurons. PLoS ONE3, e2082 (2008).
  • Gullapalli S, Thomas A, Lingam PR, Kattige V, Gudi GS, Khairatkar-Joshi N. GRC 15133, a novel, selective TRPV3 antagonist with anti-hyperalgesic effects in inflammatory and neuropathic pain. Presented at: CHI-World Pharmaceutical Congress PA, USA, 12–14 May 2008.
  • Moran MM, Wei DS, Zhen X et al. Potent and selective antagonists validate TRPV3 as a target for analgesic therapeutics. Abstr. Soc. Neurosci.143.5/J6 (2007).
  • Alessandri-Haber N, Dina OA, Joseph EK, Reichling D, Levine JD. A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J. Neurosci.26, 3864–3874 (2006).
  • Grant AD, Cottrell GS, Amadesi S et al. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J. Physiol.578, 715–733 (2007).
  • Chen X, Alessandri-Haber N, Levine JD. Marked attenuation of inflammatory mediator-induced C-fiber sensitization for mechanical and hypotonic stimuli in TRPV4-/- mice. Mol. Pain3, 31 (2007).
  • Vergnolle N, Cenac N, Altier C et al. A role for transient receptor potential vanilloid 4 in tonicity-induced neurogenic inflammation. Br. J. Pharmacol.159, 1161–1173 (2010).
  • Alessandri-Haber N, Dina OA, Yeh JJ et al. Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J. Neurosci.24, 4444–4452 (2004).
  • Levine JD, Alessandri-Haber N. TRP channels: targets for the relief of pain. Biochim. Biophys. Acta1772, 989–1003 (2007).
  • Vincent F, Acevedo A, Nguyen MT et al. Identification and characterization of novel TRPV4 modulators. Biochem. Biophys. Res. Commun.389, 490–494 (2009).
  • Broad LM, Mogg AJ, Beattie RE et al. TRP channels as emerging targets for pain therapeutics. Expert. Opin. Ther. Targets.13, 69–81 (2009).
  • Diogenes A, Akopian AN, Hargreaves KM. NGF up-regulates TRPA1: implications for orofacial pain. J. Dent. Res.86, 550–555 (2007).
  • Caceres AI, Brackmann M, Elia MD et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc. Natl Acad. Sci. USA106, 9099–9104 (2009).
  • Petrus M, Peier AM, Bandell M et al. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain3, 40 (2007).
  • DeFalco J, Steiger D, Gustafson A et al. Oxime derivatives related to AP18: agonists and antagonists of the TRPA1 receptor. Bioorg. Med. Chem. Lett.20 (1), 276–279 (2010).
  • Eid SR, Crown ED, Moore EL et al. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol. Pain4, 48 (2008).
  • Wei H, Hamalainen MM, Saarnilehto M, Koivisto A, Pertovaara A. Attenuation of mechanical hypersensitivity by an antagonist of the TRPA1 ion channel in diabetic animals. Anesthesiology111, 147–154 (2009).
  • Fleetwood-Walker SM, Proudfoot CW, Garry EM et al. Cold comfort pharm. Trends Pharmacol. Sci.28, 621–628 (2007).
  • Proudfoot CJ, Garry EM, Cottrell DF et al. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr. Biol.16, 1591–1605 (2006).
  • Xing H, Chen M, Ling J, Tan W, Gu JG. TRPM8 mechanism of cold allodynia after chronic nerve injury. J. Neurosci.27, 13680–13690 (2007).
  • Behrendt HJ, Germann T, Gillen C, Hatt H, Jostock R. Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br. J. Pharmacol.141, 737–745 (2004).
  • Takashima Y, Daniels RL, Knowlton W et al. Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. J. Neurosci.27, 14147–14157 (2007).
  • Viana F, De la Pena E, Belmonte C. Specificity of cold thermotransduction is determined by differential ionic channel expression. Nat. Neurosci.5, 254–260 (2002).
  • Xing H, Ling J, Chen M, Gu JG. Chemical and cold sensitivity of two distinct populations of TRPM8-expressing somatosensory neurons. J. Neurophysiol.95, 1221–1230 (2006).
  • Malkia A, Madrid R, Meseguer V et al. Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors. J. Physiol.581, 155–174 (2007).
  • Malkia A, Pertusa M, Fernandez-Ballester G, Ferrer-Montiel A, Viana F. Differential role of the menthol-binding residue Y745 in the antagonism of thermally gated TRPM8 channels. Mol. Pain5, 62 (2009).
  • Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol. Rev.87, 165–217 (2007).
  • Chizh BA, O’Donnell MB, Napolitano A et al. The effects of the TRPV1 antagonist SB-705498 on TRPV1 receptor-mediated activity and inflammatory hyperalgesia in humans. Pain132, 132–141 (2007).
  • Colsoul B, Nilius B, Vennekens R. On the putative role of transient receptor potential cation channels in asthma. Clin. Exp. Allergy39, 1456–1466 (2009).
  • Viana F, Ferrer-Montiel A. TRPA1 modulators in preclinical development. Expert Opin. Ther. Pat.19, 1787–1799 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.