124
Views
35
CrossRef citations to date
0
Altmetric
Review

Hydrogen sulfide-mediated myocardial pre- and post-conditioning

&
Pages 83-96 | Published online: 10 Jan 2014

References

  • Assmann G, Cullen P, Jossa F, Lewis B, Mancini M. Coronary heart disease: reducing the risk: the scientific background to primary and secondary prevention of coronary heart disease. A worldwide view. International Task force for the Prevention of Coronary Heart disease. Arterioscler. Thromb. Vasc. Biol.19(8), 1819–1824 (1999).
  • Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc. Med.15(2), 69–75 (2005).
  • Granfeldt A, Lefer DJ, Vinten-Johansen J. Protective ischaemia in patients: preconditioning and postconditioning. Cardiovasc. Res.83(2), 234–246 (2009).
  • Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation74(5), 1124–1136 (1986).
  • Bolli R, Li QH, Tang XL et al. The late phase of preconditioning and its natural clinical application – gene therapy. Heart Fail. Rev.12(3–4), 189–199 (2007).
  • Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J. Mol. Cell. Cardiol.33(11), 1897–1918 (2001).
  • Tritto I, Ambrosio G. Role of oxidants in the signaling pathway of preconditioning. Antioxid. Redox Signal.3(1), 3–10 (2001).
  • Cohen MV, Yang XM, Liu GS, Heusch G, Downey JM. Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K(ATP) channels. Circ. Res.89(3), 273–278 (2001).
  • Liu GS, Thornton J, Van Winkle DM et al. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation84(1), 350–356 (1991).
  • Schultz JE, Rose E, Yao Z, Gross GJ. Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am. J. Physiol.268(5 Pt 2), H2157–H2161 (1995).
  • Marber MS, Latchman DS, Walker JM, Yellon DM. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation88(3), 1264–1272 (1993).
  • Na HS, Kim YI, Yoon YW et al. Ventricular premature beat-driven intermittent restoration of coronary blood flow reduces the incidence of reperfusion-induced ventricular fibrillation in a cat model of regional ischemia. Am. Heart J.132(1 Pt 1), 78–83 (1996).
  • Zhao ZQ, Corvera JS, Halkos ME et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol.285(2), H579–H588 (2003).
  • Halkos ME, Kerendi F, Corvera JS et al. Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. Ann. Thorac. Surg.78(3), 961–969 (2004).
  • Skyschally A, van Caster P, Boengler K et al. Ischemic postconditioning in pigs: no causal role for RISK activation. Circ. Res.104(1), 15–18 (2009).
  • Sun HY, Wang NP, Kerendi F et al. Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am. J. Physiol. Heart Circ. Physiol.288(4), H1900–H1908 (2005).
  • Kin H, Wang NP, Mykytenko J et al. Inhibition of myocardial apoptosis by postconditioning is associated with attenuation of oxidative stress-mediated nuclear factor-κB translocation and TNF α release. Shock29(6), 761–768 (2007).
  • Sun HY, Wang NP, Halkos M et al. Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Apoptosis11(9), 1583–1593 (2006).
  • Di Lisa F, Canton M, Menabo R, Dodoni G, Bernardi P. Mitochondria and reperfusion injury. The role of permeability transition. Basic Res. Cardiol.98(4), 235–241 (2003).
  • Halestrap AP, Kerr PM, Javadov S, Woodfield KY. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim. Biophys. Acta1366(1–2), 79–94 (1998).
  • Feng J, Lucchinetti E, Ahuja P et al. Isoflurane postconditioning prevents opening of the mitochondrial permeability transition pore through inhibition of glycogen synthase kinase 3β. Anesthesiology103(5), 987–995 (2005).
  • Weber NC, Preckel B, Schlack W. The effect of anaesthetics on the myocardium – new insights into myocardial protection. Eur. J. Anaesthesiol.22(9), 647–657 (2005).
  • Lim SY, Davidson SM, Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore. Cardiovasc. Res.75(3), 530–535 (2007).
  • Mudalagiri NR, Mocanu MM, Di Salvo C et al. Erythropoietin protects the human myocardium against hypoxia/reoxygenation injury via phosphatidylinositol-3 kinase and ERK1/2 activation. Br. J. Pharmacol.153(1), 50–56 (2008).
  • Johnson G 3rd, Tsao PS, Lefer AM. Cardioprotective effects of authentic nitric oxide in myocardial ischemia with reperfusion. Crit. Care Med.19(2), 244–252 (1991).
  • Lefer DJ, Nakanishi K, Johnston WE, Vinten-Johansen J. Antineutrophil and myocardial protecting actions of a novel nitric oxide donor after acute myocardial ischemia and reperfusion of dogs. Circulation88(5 Pt 1), 2337–2350 (1993).
  • Budde JM, Velez DA, Zhao Z et al. Comparative study of AMP579 and adenosine in inhibition of neutrophil-mediated vascular and myocardial injury during 24 h of reperfusion. Cardiovasc. Res.47(2), 294–305 (2000).
  • Lefer DJ. A new gaseous signaling molecule emerges: cardioprotective role of hydrogen sulfide. Proc. Natl Acad. Sci. USA104(46), 17907–17908 (2007).
  • Aon MA, Cortassa S, Akar FG, O’Rourke B. Mitochondrial criticality: a new concept at the turning point of life or death. Biochim. Biophys. Acta1762(2), 232–240 (2006).
  • Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci16(3), 1066–1071 (1996).
  • Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun.237(3), 527–531 (1997).
  • Nicholls P. The effect of sulphide on cytochrome aa3. Isosteric and allosteric shifts of the reduced α-peak. Biochim. Biophys. Acta396(1), 24–35 (1975).
  • Khan AA, Schuler MM, Prior MG et al. Effects of hydrogen sulfide exposure on lung mitochondrial respiratory chain enzymes in rats. Toxicol. Appl. Pharmacol.103(3), 482–490 (1990).
  • Nicholls P, Kim JK. Sulphide as an inhibitor and electron donor for the cytochrome c oxidase system. Can. J. Biochem.60(6), 613–623 (1982).
  • Julian D, April KL, Patel S, Stein JR, Wohlgemuth SE. Mitochondrial depolarization following hydrogen sulfide exposure in erythrocytes from a sulfide-tolerant marine invertebrate. J. Exp. Biol.208(Pt 21), 4109–4122 (2005).
  • Eghbal MA, Pennefather PS, O’Brien PJ. H2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation. Toxicology203(1–3), 69–76 (2004).
  • Chen KY, Morris JC. Oxidation of sulfide by O2: catalysis and inhibition. J. San. Eng. Div. Proc. Am. Soc. Civ. Eng.98, 215–227 (1972).
  • Tapley DW, Beuttner GR, Shick JM. Free radicals and chemiluminescence as products of the spontaneous oxidation of sulfide in seawater, and their biological implications. Biol. Bull.196, 52–56 (1999).
  • Bagarinao T, Vetter RD. Sulfide-hemoglobin interactions in the sulfide-tolerant salt-marsh resident, the California killifish Fundulus parvipinnis. J. Comp. Physiol. B162, 614–624 (1992).
  • Kraus DW, Doeller JE, Powell CS. Sulfide may directly modify cytoplasmic hemoglobin deoxygenation in Solemya reidi gills. J. Exp. Biol.199, 1343–1352 (1996).
  • Völkel S, Berenbrink MK. Sulphaemoglobin formation in fish: a comparison between the haemoglobin of the sulphide-sensitive rainbow trout (Oncorhynchus mykiss) and of the sulphide-tolerant common carp (Cyprinus carpio). J. Exp. Biol.203, 1047–1058 (2000).
  • Shibuya N, Tanaka M, Yoshida M et al. 3-mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid. Redox Signal.11(4), 703–714 (2009).
  • Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H. Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J. Biochem.146(5), 623–626 (2009).
  • Elrod JW, Calvert JW, Morrison J et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc. Natl Acad. Sci. USA104(39), 15560–15565 (2007).
  • Bian JS, Yong QC, Pan TT et al. Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J. Pharmacol. Exp. Ther.316(2), 670–678 (2006).
  • Johansen D, Ytrehus K, Baxter GF. Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia–reperfusion injury – evidence for a role of KATP channels. Basic Res. Cardiol.101(1), 53–60 (2006).
  • Elrod JW, Calvert JW, Duranski MR, Lefer DJ. Hydrogen sulfide donor protects against acute myocardial ischemia–reperfusion injury. Circulation114(18, Suppl. S), 172 (2006).
  • Sivarajah A, McDonald MC, Thiemermann C. The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat. Shock26(2), 154–161 (2006).
  • Zhu YZ, Wang ZJ, Ho P et al. Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats. J. Appl. Physiol.102(1), 261–268 (2007).
  • Cheng Y, Ndisang JF, Tang G, Cao K, Wang R. Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am. J. Physiol. Heart Circ. Physiol.287(5), H2316–H2323 (2004).
  • Geng B, Yang J, Qi Y et al. H2S generated by heart in rat and its effects on cardiac function. Biochem. Biophys. Res. Commun.313(2), 362–368 (2004).
  • Kubo S, Kajiwara M, Kawabata A. Dual modulation of the tension of isolated gastric artery and gastric mucosal circulation by hydrogen sulfide in rats. Inflammopharmacology15(6), 288–292 (2007).
  • Yang W, Yang G, Jia X, Wu L, Wang R. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J. Physiol.569(Pt 2), 519–531 (2005).
  • Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J.20(21), 6008–6016 (2001).
  • Babenko AP, Gonzalez GC, Bryan J. Hetero-concatemeric KIR6.X4/SUR14 channels display distinct conductivities but uniform ATP inhibition. J. Biol. Chem.275(41), 31563–31566 (2000).
  • Shyng S, Nichols CG. Octameric stoichiometry of the KATP channel complex. J. Gen. Physiol.110(6), 655–664 (1997).
  • Clement JP 4th, Kunjilwar K, Gonzalez G et al. Association and stoichiometry of KATP channel subunits. Neuron18(5), 827–838 (1997).
  • Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature440(7083), 470–476 (2006).
  • Das B, Sarkar C. Is the sarcolemmal or mitochondrial K(ATP) channel activation important in the antiarrhythmic and cardioprotective effects during acute ischemia/reperfusion in the intact anesthetized rabbit model? Life Sci.77(11), 1226–1248 (2005).
  • Garlid KD, Paucek P, Yarov-Yarovoy V et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ. Res.81(6), 1072–1082 (1997).
  • Hide EJ, Thiemermann C. Limitation of myocardial infarct size in the rabbit by ischaemic preconditioning is abolished by sodium 5-hydroxydecanoate. Cardiovasc. Res.31(6), 941–946 (1996).
  • Hide EJ, Thiemermann C. Sulprostone-induced reduction of myocardial infarct size in the rabbit by activation of ATP-sensitive potassium channels. Br. J. Pharmacol.118(6), 1409–1414 (1996).
  • Carroll R, Yellon DM. Delayed cardioprotection in a human cardiomyocyte-derived cell line: the role of adenosine, p38MAP kinase and mitochondrial KATP. Basic Res. Cardiol.95(3), 243–249 (2000).
  • Downey JM, Cohen MV. Do mitochondrial KATP channels serve as triggers rather than end-effectors of ischemic preconditioning’s protection? Basic Res. Cardiol.95(4), 272–274 (2000).
  • Pain T, Yang XM, Critz SD et al. Opening of mitochondrial KATP channels triggers the preconditioned state by generating free radicals. Circ. Res.87(6), 460–466 (2000).
  • Cole WC, McPherson CD, Sontag D. ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Circ. Res.69(3), 571–581 (1991).
  • Noma A. ATP-regulated K+ channels in cardiac muscle. Nature305(5930), 147–148 (1983).
  • Pan TT, Feng ZN, Lee SW, Moore PK, Bian JS. Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. J. Mol. Cell. Cardiol.40(1), 119–130 (2006).
  • Kimura Y, Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J.18(10), 1165–1167 (2004).
  • Kimura Y, Dargusch R, Schubert D, Kimura H. Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid. Redox Signal.8(3–4), 661–670 (2006).
  • Kimura Y, Goto Y, Kimura H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Redox Signal.12(1), 1–13 (2010).
  • Whiteman M, Armstrong JS, Chu SH et al. The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite ‘scavenger’? J. Neurochem.90(3), 765–768 (2004).
  • Calvert JW, Jha S, Gundewar S et al. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ. Res.105(4), 365–374 (2009).
  • Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc. Res.61(3), 448–460 (2004).
  • Yellon DM, Baxter GF. Reperfusion injury revisited: is there a role for growth factor signaling in limiting lethal reperfusion injury? Trends Cardiovasc. Med.9(8), 245–249 (1999).
  • Churchill EN, Mochly-Rosen D. The roles of PKCδ and ε isoenzymes in the regulation of myocardial ischaemia/reperfusion injury. Biochem. Soc. Trans.35(Pt 5), 1040–1042 (2007).
  • Bertolotto C, Maulon L, Filippa N, Baier G, Auberger P. Protein kinase C τ and ε promote T-cell survival by a RSK-dependent phosphorylation and inactivation of BAD. J. Biol. Chem.275(47), 37246–37250 (2000).
  • Griner EM, Kazanietz MG. Protein kinase C and other diacylglycerol effectors in cancer. Nat. Rev. Cancer7(4), 281–294 (2007).
  • Madamanchi NR, Li S, Patterson C, Runge MS. Thrombin regulates vascular smooth muscle cell growth and heat shock proteins via the JAK–STAT pathway. J. Biol. Chem.276(22), 18915–18924 (2001).
  • Osipov RM, Robich MP, Feng J et al. Effect of hydrogen sulfide in a porcine model of myocardial ischemia/reperfusion: comparison of different administration regimens and characterization of the cellular mechanisms of protection. J. Cardiovasc. Pharmacol, 54(4), 287–297 (2009).
  • Sodha NR, Clements RT, Feng J et al. Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury. J. Thorac. Cardiovasc. Surg.138(4), 977–984 (2009).
  • Oh GS, Pae HO, Lee BS et al. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-κB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic. Biol. Med.41(1), 106–119 (2006).
  • Kukielka GL, Smith CW, Manning AM et al. Induction of interleukin-6 synthesis in the myocardium. Potential role in postreperfusion inflammatory injury. Circulation92(7), 1866–1875 (1995).
  • Hennein HA, Ebba H, Rodriguez JL et al. Relationship of the proinflammatory cytokines to myocardial ischemia and dysfunction after uncomplicated coronary revascularization. J. Thorac. Cardiovasc. Surg.108(4), 626–635 (1994).
  • Kukielka GL, Smith CW, LaRosa GJ et al. Interleukin-8 gene induction in the myocardium after ischemia and reperfusion in vivo. J. Clin. Invest.95(1), 89–103 (1995).
  • Dinarello CA. Proinflammatory cytokines. Chest118(2), 503–508 (2000).
  • Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ. Res.94(12), 1543–1553 (2004).
  • Herrera-Garza EH, Stetson SJ, Cubillos-Garzon A et al. Tumor necrosis factor-α: a mediator of disease progression in the failing human heart. Chest115(4), 1170–1174 (1999).
  • Zanardo RC, Brancaleone V, Distrutti E et al. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J.20(12), 2118–2120 (2006).
  • Zhang H, Zhi L, Moochhala SM, Moore PK, Bhatia M. Endogenous hydrogen sulfide regulates leukocyte trafficking in cecal ligation and puncture-induced sepsis. J. Leukoc. Biol.82(4), 894–905 (2007).
  • Prasad A, Gersh BJ. Management of microvascular dysfunction and reperfusion injury. Heart91(12), 1530–1532 (2005).
  • Hu LF, Pan TT, Neo KL, Yong QC, Bian JS. Cyclooxygenase-2 mediates the delayed cardioprotection induced by hydrogen sulfide preconditioning in isolated rat cardiomyocytes. Pflugers Arch.455(6), 971–978 (2008).
  • Cai WJ, Wang MJ, Moore PK et al. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc. Res.76(1), 29–40 (2007).
  • Yong QC, Lee SW, Foo CS et al. Endogenous hydrogen sulphide mediates the cardioprotection induced by ischemic postconditioning. Am. J. Physiol. Heart Circ. Physiol.295(3), H1330–H1340 (2008).
  • Dimmeler S, Fleming I, Fisslthaler B et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature399(6736), 601–605 (1999).
  • Mustafa AK, Gadalla MM, Sen N et al. H2S signals through protein S-sulfhydration. Sci. Signal.2(96), ra72 (2009).
  • Kimura H. Hydrogen sulfide: its production, release and functions. Amino Acids DOI: 10.1007/s00726-010-0510-x (2010) (Epub ahead of print).
  • Daniels KM, Stipanuk MH. The effect of dietary cysteine level on cysteine metabolism in rats. J. Nutr.112(11), 2130–2141 (1982).
  • Ishigami M, Hiraki K, Umemura K et al. A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid. Redox Signal.11(2), 205–214 (2009).
  • Ogasawara Y, Ishii K, Togawa T, Tanabe S. Determination of bound sulfur in serum by gas dialysis/high-performance liquid chromatography. Anal. Biochem.215(1), 73–81 (1993).
  • Toohey JI. Sulphane sulphur in biological systems: a possible regulatory role. Biochem. J.264(3), 625–632 (1989).
  • Olson KR. Hydrogen sulfide and oxygen sensing: implications in cardiorespiratory control. J. Exp. Biol.211(Pt 17), 2727–2734 (2008).
  • Olson KR, Dombkowski RA, Russell MJ et al. Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J. Exp. Biol.209(Pt 20), 4011–4023 (2006).
  • Olson KR, Forgan LG, Dombkowski RA, Forster ME. Oxygen dependency of hydrogen sulfide-mediated vasoconstriction in cyclostome aortas. J. Exp. Biol.211(Pt 14), 2205–2213 (2008).
  • Whitfield NL, Kreimier EL, Verdial FC, Skovgaard N, Olson KR. A reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol.294, 1930–1937 (2008).
  • d’Emmanuele di Villa Bianca R, Sorrentino R, Maffia P et al. Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. Proc. Natl Acad. Sci. USA106(11), 4513–4518 (2009).
  • Srilatha B, Adaikan PG, Li L, Moore PK. Hydrogen sulphide: a novel endogenous gasotransmitter facilitates erectile function. J. Sex. Med.4(5), 1304–1311 (2007).
  • Shukla N, Rossoni G, Hotston M et al. Effect of hydrogen sulphide-donating sildenafil (ACS6) on erectile function and oxidative stress in rabbit isolated corpus cavernosum and in hypertensive rats. BJU Int.103(11), 1522–1529 (2009).
  • Srilatha B, Adaikan PG, Moore PK. Possible role for the novel gasotransmitter hydrogen sulphide in erectile dysfunction – a pilot study. Eur. J. Pharmacol.535(1–3), 280–282 (2006).
  • Du J, Yan H, Tang C. Endogenous H2S is involved in the development of spontaneous hypertension. Beijing Da Xue Xue Bao35(1), 102 (2003).
  • Yang G, Wu L, Jiang B et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science322(5901), 587–590 (2008).
  • Brancaleone V, Roviezzo F, Vellecco V et al. Biosynthesis of H2S is impaired in non-obese diabetic (NOD) mice. Br. J. Pharmacol.155(5), 673–680 (2008).
  • Koenitzer JR, Isbell TS, Patel HD et al. Hydrogen sulfide mediates vasoactivity in an O2-dependent manner. Am. J. Physiol. Heart Circ. Physiol.292(4), H1953–H1960 (2007).
  • Jain SK, Bull R, Rains JL et al. Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation? Antioxid. Redox Signal.12(11), 1333–1337 (2010).
  • Whiteman M, Gooding KM, Whatmore JL et al. Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia53(8), 1722–1726 (2010).
  • Predmore BL, Alendy MJ, Ahmed KI, Leeuwenburgh C, Julian D. The hydrogen sulfide signaling system: changes during aging and the benefits of caloric restriction. Age32(4), 467–481 (2010).
  • Kloner RA. Clinical application of remote ischemic preconditioning. Circulation119(6), 776–778 (2009).
  • Yellon DM, Alkhulaifi AM, Pugsley WB. Preconditioning the human myocardium. Lancet342(8866), 276–277 (1993).
  • Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation87(3), 893–899 (1993).
  • Birnbaum Y, Hale SL, Kloner RA. Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation96(5), 1641–1646 (1997).
  • Kharbanda RK, Mortensen UM, White PA et al. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation106(23), 2881–2883 (2002).
  • Hausenloy DJ, Mwamure PK, Venugopal V et al. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet370(9587), 575–579 (2007).
  • Cheung MM, Kharbanda RK, Konstantinov IE et al. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J. Am. Coll. Cardiol.47(11), 2277–2282 (2006).
  • Laskey WK. Brief repetitive balloon occlusions enhance reperfusion during percutaneous coronary intervention for acute myocardial infarction: a pilot study. Catheter. Cardiovasc. Interv.65(3), 361–367 (2005).
  • Staat P, Rioufol G, Piot C et al. Postconditioning the human heart. Circulation112(14), 2143–2148 (2005).
  • Ma XJ, Zhang XH, Li CM, Luo M. Effect of postconditioning on coronary blood flow velocity and endothelial function in patients with acute myocardial infarction. Scand. Cardiovasc. J.40(6), 327–333 (2006).
  • Yang XC, Liu Y, Wang LF et al. Reduction in myocardial infarct size by postconditioning in patients after percutaneous coronary intervention. J. Invasive Cardiol.19(10), 424–430 (2007).
  • Thibault H, Piot C, Ovize M. Postconditioning in man. Heart Fail. Rev.12(3–4), 245–248 (2007).
  • Laskey WK, Yoon S, Calzada N, Ricciardi MJ. Concordant improvements in coronary flow reserve and ST-segment resolution during percutaneous coronary intervention for acute myocardial infarction: a benefit of postconditioning. Catheter. Cardiovasc. Interv.72(2), 212–220 (2008).
  • Zhao WS, Xu L, Wang LF et al. A 60-s postconditioning protocol by percutaneous coronary intervention inhibits myocardial apoptosis in patients with acute myocardial infarction. Apoptosis14(10), 1204–1211 (2009).
  • Rossoni G, Sparatore A, Tazzari V et al. The hydrogen sulphide-releasing derivative of diclofenac protects against ischaemia–reperfusion injury in the isolated rabbit heart. Br. J. Pharmacol.153(1), 100–109 (2008).
  • Fisher CD, Augustine LM, Maher JM et al. Induction of drug-metabolizing enzymes by garlic and allyl sulfide compounds via activation of constitutive androstane receptor and nuclear factor E2-related factor 2. Drug Metab. Dispos.35(6), 995–1000 (2007).
  • Benavides GA, Squadrito GL, Mills RW et al. Hydrogen sulfide mediates the vasoactivity of garlic. Proc. Natl Acad. Sci. USA104(46), 17977–17982 (2007).
  • Bannenberg GL, Vieira HL. Therapeutic applications of the gaseous mediators carbon monoxide and hydrogen sulfide. Expert Opin. Ther. Pat.19(5), 663–682 (2009).
  • Caliendo G, Cirino G, Santagada V, Wallace JL. Synthesis and biological effects of hydrogen sulfide (H2S): development of H2S-releasing drugs as pharmaceuticals. J. Med. Chem.53(17), 6275–6286 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.