101
Views
34
CrossRef citations to date
0
Altmetric
Special Report

Immunomodulation by vitamin D: implications for TB

, &
Pages 583-591 | Published online: 10 Jan 2014

References

  • Holick MF. Vitamin D deficiency. N. Engl. J. Med.357(3), 266–281 (2007).
  • Adams JS, Hewison M. Update in vitamin D. J. Clin. Endocrinol. Metab.95(2), 471–478 (2010).
  • DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr.80(Suppl. 6), 1689S–1696S (2004).
  • Bouillon R, Bischoff-Ferrari H, Willett W. Vitamin D and health: perspectives from mice and man. J. Bone Miner. Res.23(7), 974–979 (2008).
  • Bikle DD, Siiteri PK, Ryzen E, Haddad JG. Serum protein binding of 1,25-dihydroxyvitamin D: a reevaluation by direct measurement of free metabolite levels. J. Clin. Endocrinol. Metab.61(5), 969–975 (1985).
  • Bikle DD, Gee E, Halloran B, Kowalski MA, Ryzen E, Haddad JG. Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein. J. Clin. Endocrinol. Metab.63(4), 954–959 (1986).
  • Nykjaer A, Dragun D, Walther D et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell96(4), 507–515 (1999).
  • Bikle DD, Gee E. Free, and not total, 1,25-dihydroxyvitamin D regulates 25-hydroxyvitamin D metabolism by keratinocytes. Endocrinology124(2), 649–654 (1989).
  • Chun RF, Lauridsen AL, Suon L et al. Vitamin D-binding protein directs monocyte responses to 25-hydroxy- and 1,25-dihydroxyvitamin D. J. Clin. Endocrinol. Metab.95(7), 3368–3376 (2010).
  • Zella LA, Shevde NK, Hollis BW, Cooke NE, Pike JW. Vitamin D-binding protein influences total circulating levels of 1,25-dihydroxyvitamin D3 but does not directly modulate the bioactive levels of the hormone in vivo. Endocrinology149(7), 3656–3667 (2008).
  • MacDonald PN, Baudino TA, Tokumaru H, Dowd DR, Zhang C. Vitamin D receptor and nuclear receptor coactivators: crucial interactions in vitamin D-mediated transcription. Steroids66(3–5), 171–176 (2001).
  • Pike JW, Meyer MB, Watanuki M et al. Perspectives on mechanisms of gene regulation by 1,25-dihydroxyvitamin D3 and its receptor. J. Steroid Biochem. Mol. Biol.103(3–5), 389–395 (2007).
  • Adams JS, Gacad MA. Characterization of 1 α-hydroxylation of vitamin D3 sterols by cultured alveolar macrophages from patients with sarcoidosis. J. Exp. Med.161(4), 755–765 (1985).
  • Dusso A, Brown A, Slatopolsky E. Extrarenal production of calcitriol. Semin. Nephrol.14(2), 144–155 (1994).
  • Farooque A, Moss C, Zehnder D, Hewison M, Shaw NJ. Expression of 25-hydroxyvitamin D3–1α-hydroxylase in subcutaneous fat necrosis. Br. J. Dermatol.160(2), 423–425 (2009).
  • Zehnder D, Bland R, Williams MC et al. Extrarenal expression of 25-hydroxyvitamin D(3)-1 α-hydroxylase. J. Clin. Endocrinol. Metab.86(2), 888–894 (2001).
  • Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the immune system. Curr. Opin. Pharmacol.10(4), 482–496 (2010).
  • Maruotti N, Cantatore FP. Vitamin D and the immune system. J. Rheumatol.37(3), 491–495 (2010).
  • Hewison M. Vitamin D and the immune system: new perspectives on an old theme. Endocrinol. Metab. Clin. North Am.39(2), 365–379 (2010).
  • Grad R. Cod and the consumptive: a brief history of cod-liver oil in the treatment of pulmonary tuberculosis. Pharm. Hist.46(3), 106–120 (2004).
  • Rook GA, Steele J, Fraher L et al. Vitamin D3, gamma interferon, and control of proliferation of Mycobacterium tuberculosis by human monocytes. Immunology57(1), 159–163 (1986).
  • Koeffler HP, Reichel H, Bishop JE, Norman AW. γ-interferon stimulates production of 1,25-dihydroxyvitamin D3 by normal human macrophages. Biochem. Biophys. Res. Commun.127(2), 596–603 (1985).
  • Liu PT, Stenger S, Li H et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science311(5768), 1770–1773 (2006).
  • Nelson CD, Reinhardt TA, Beitz DC, Lippolis JD. In vivo activation of the intracrine vitamin D pathway in innate immune cells and mammary tissue during a bacterial infection. PloS one5(11), e15469 (2010).
  • Wang TT, Nestel FP, Bourdeau V et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol.173(5), 2909–2912 (2004).
  • Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J.19(9), 1067–1077 (2005).
  • Adams JS, Ren S, Liu PT et al. Vitamin D-directed rheostatic regulation of monocyte antibacterial responses. J. Immunol.182(7), 4289–4295 (2009).
  • Gombart AF, Saito T, Koeffler HP. Exaptation of an ancient Alu short interspersed element provides a highly conserved vitamin D-mediated innate immune response in humans and primates. BMC Genomics10, 321 (2009).
  • Liu PT, Schenk M, Walker VP et al. Convergence of IL-1β and VDR activation pathways in human TLR2/1-induced antimicrobial responses. PloS one4(6), e5810 (2009).
  • Wang TT, Dabbas B, Laperriere D et al. Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-β defensin 2 innate immune pathway defective in Crohn’s disease. J. Biol. Chem.285(4), 2227–2231 (2010).
  • Crotzer VL, Blum JS. Autophagy and adaptive immunity. Immunology131(1), 9–17 (2010).
  • Jo EK. Innate immunity to mycobacteria: vitamin D and autophagy. Cell. Microbiol.12(8), 1026–1035 (2010).
  • Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature469(7330), 323–335 (2011).
  • Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell119(6), 753–766 (2004).
  • Deretic V, Delgado M, Vergne I et al. Autophagy in immunity against Mycobacterium tuberculosis: a model system to dissect immunological roles of autophagy. Curr. Top. Microbiol. Immunol.335, 169–188 (2009).
  • Yuk JM, Shin DM, Lee HM et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe6(3), 231–243 (2009).
  • Shin DM, Yuk JM, Lee HM et al. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signaling. Cell. Microbiol.12(11), 1648–1665 (2010).
  • Sly LM, Lopez M, Nauseef WM, Reiner NE. 1α,25-Dihydroxyvitamin D3-induced monocyte antimycobacterial activity is regulated by phosphatidylinositol 3-kinase and mediated by the NADPH-dependent phagocyte oxidase. J. Biol. Chem.276(38), 35482–35493 (2001).
  • Yang CS, Shin DM, Kim KH et al. NADPH oxidase 2 interaction with TLR2 is required for efficient innate immune responses to mycobacteria via cathelicidin expression. J. Immunol.182(6), 3696–3705 (2009).
  • Chan J, Xing Y, Magliozzo RS, Bloom BR. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J. Exp. Med.175(4), 1111–1122 (1992).
  • MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl. Acad. Sci. USA94(10), 5243–5248 (1997).
  • Nicholson S, Bonecini-Almeida Mda G, Lapa e Silva JR, Lapa e Silva JR et al. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J. Exp. Med.183(5), 2293–2302 (1996).
  • Waters WR, Palmer MV, Nonnecke BJ, Whipple DL, Horst RL. Mycobacterium bovis infection of vitamin D-deficient NOS2-/- mice. Microb. Pathog.36(1), 11–17 (2004).
  • Rockett KA, Brookes R, Udalova I, Vidal V, Hill AV, Kwiatkowski D. 1,25-Dihydroxyvitamin D3 induces nitric oxide synthase and suppresses growth of Mycobacterium tuberculosis in a human macrophage-like cell line. Infect. Immun.66(11), 5314–5321 (1998).
  • Rivas-Santiago B, Hernandez-Pando R, Carranza C et al. Expression of cathelicidin LL-37 during Mycobacterium tuberculosis infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells. Infect. Immun.76(3), 935–941 (2008).
  • Martineau AR, Wilkinson KA, Newton SM et al. IFN-γ- and TNF-independent vitamin D-inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J. Immunol.178(11), 7190–7198 (2007).
  • Edfeldt K, Liu PT, Chun R et al. T-cell cytokines differentially control human monocyte antimicrobial responses by regulating vitamin D metabolism. Proc. Natl. Acad. Sci. USA107(52), 22593–22598 (2010).
  • Krutzik SR, Hewison M, Liu PT et al. IL-15 links TLR2/1-induced macrophage differentiation to the vitamin D-dependent antimicrobial pathway. J. Immunol.181(10), 7115–7120 (2008).
  • Harris J, Hope JC, Keane J. Tumor necrosis factor blockers influence macrophage responses to Mycobacterium tuberculosis.J. Infect. Dis.198(12), 1842–1850 (2008).
  • Master SS, Rampini SK, Davis AS et al.Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe3(4), 224–232 (2008).
  • Schaible UE, Sturgill-Koszycki S, Schlesinger PH, Russell DG. Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J. Immunol.160(3), 1290–1296 (1998).
  • Via LE, Fratti RA, McFalone M, Pagan-Ramos E, Deretic D, Deretic V. Effects of cytokines on mycobacterial phagosome maturation. J. Cell Sci.111(Pt 7), 897–905 (1998).
  • Harris J, Keane J. How tumour necrosis factor blockers interfere with tuberculosis immunity. Clin. Exp. Immunol.161(1), 1–9 (2010).
  • Shi CS, Kehrl JH. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy. Sci. Signal.3(123), ra42 (2010).
  • Harris J, De Haro SA, Master SS et al. T helper 2 cytokines inhibit autophagic control of intracellular. Mycobacterium tuberculosis Immunity27(3), 505–517 (2007).
  • Karmali R, Hewison M, Rayment N et al. 1,25(OH)2D3 regulates c-myc mRNA levels in tonsillar T lymphocytes. Immunology74(4), 589–593 (1991).
  • Nunn JD, Katz DR, Barker S et al. Regulation of human tonsillar T-cell proliferation by the active metabolite of vitamin D3. Immunology59(4), 479–484 (1986).
  • Provvedini DM, Manolagas SC. 1 A,25-dihydroxyvitamin D3 receptor distribution and effects in subpopulations of normal human T lymphocytes. J. Clin. Endocrinol. Metab.68(4), 774–779 (1989).
  • Lemire JM. Immunomodulatory actions of 1,25-dihydroxyvitamin D3. J. Steroid Biochem. Mol. Biol.53(1–6), 599–602 (1995).
  • Cantorna MT, Yu S, Bruce D. The paradoxical effects of vitamin D on type 1 mediated immunity. Mol. Aspects Med.29(6), 369–375 (2008).
  • Overbergh L, Decallonne B, Waer M et al. 1α,25-dihydroxyvitamin D3 induces an autoantigen-specific T-helper 1/T-helper 2 immune shift in NOD mice immunized with GAD65 (p524–543). Diabetes.49(8), 1301–1307 (2000).
  • Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O’Garra A. 1α,25-Dihydroxyvitamin D3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J. Immunol.167(9), 4974–4980 (2001).
  • Harris J, Master SS, De Haro SA et al. Th1–Th2 polarisation and autophagy in the control of intracellular mycobacteria by macrophages. Vet. Immunol. Immunopathol.128(1–3), 37–43 (2009).
  • Salgame P. Host innate and Th1 responses and the bacterial factors that control Mycobacterium tuberculosis infection. Curr. Opin. Immunol.17(4), 374–380 (2005).
  • Abebe F, Bjune G. The protective role of antibody responses during Mycobacterium tuberculosis infection. Clin. Exp. Immunol.157(2), 235–243 (2009).
  • Lin PL, Flynn JL. Understanding latent tuberculosis: a moving target. J. Immunol.185(1), 15–22 (2010).
  • Chambers ES, Hawrylowicz CM. The impact of vitamin D on regulatory T cells. Curr. Allergy Asthma Rep.11(1), 29–36 (2011).
  • Gregori S, Casorati M, Amuchastegui S, Smiroldo S, Davalli AM, Adorini L. Regulatory T cells induced by 1 α,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J. Immunol.167(4), 1945–1953 (2001).
  • Barrat FJ, Cua DJ, Boonstra A et al.In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J. Exp. Med.195(5), 603–616 (2002).
  • Gorman S, Kuritzky LA, Judge MA et al. Topically applied 1,25-dihydroxyvitamin D3 enhances the suppressive activity of CD4+CD25+ cells in the draining lymph nodes. J. Immunol.179(9), 6273–6283 (2007).
  • Dong X, Bachman LA, Kumar R, Griffin MD. Generation of antigen-specific, interleukin-10-producing T-cells using dendritic cell stimulation and steroid hormone conditioning. Transpl. Immunol.11(3–4), 323–333 (2003).
  • Adorini L, Penna G, Giarratana N et al. Dendritic cells as key targets for immunomodulation by Vitamin D receptor ligands. J. Steroid Biochem. Mol. Biol.89–90(1–5), 437–441 (2004).
  • Urry Z, Xystrakis E, Richards DF et al. Ligation of TLR9 induced on human IL-10-secreting Tregs by 1α,25-dihydroxyvitamin D3 abrogates regulatory function. J. Clin. Invest.119(2), 387–398 (2009).
  • Gregori S, Giarratana N, Smiroldo S, Uskokovic M, Adorini L. A 1α,25-dihydroxyvitamin D(3) analog enhances regulatory T-cells and arrests autoimmune diabetes in NOD mice. Diabetes51(5), 1367–1374 (2002).
  • Mathieu C, Badenhoop K. Vitamin D and type 1 diabetes mellitus: state of the art. Trends Endocrinol. Metab.16(6), 261–266 (2005).
  • Spach KM, Nashold FE, Dittel BN, Hayes CE. IL-10 signaling is essential for 1,25-dihydroxyvitamin D3-mediated inhibition of experimental autoimmune encephalomyelitis. J. Immunol.177(9), 6030–6037 (2006).
  • Chen X, Zhou B, Li M et al. CD4(+)CD25(+)FoxP3(+) regulatory T cells suppress Mycobacterium tuberculosis immunity in patients with active disease. Clin. Immunol.123(1), 50–59 (2007).
  • Harrington LE, Hatton RD, Mangan PR et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol.6(11), 1123–1132 (2005).
  • Liu N, Nguyen L, Chun RF et al. Altered endocrine and autocrine metabolism of vitamin D in a mouse model of gastrointestinal inflammation. Endocrinology149(10), 4799–4808 (2008).
  • Chang SH, Chung Y, Dong C. Vitamin D suppresses Th17 cytokine production by inducing C/EBP homologous protein (CHOP) expression. J. Biol. Chem.285(50), 38751–38755 (2010).
  • Colin EM, Asmawidjaja PS, van Hamburg JP et al. 1,25-dihydroxyvitamin D3 modulates Th17 polarization and interleukin-22 expression by memory T cells from patients with early rheumatoid arthritis. Arthritis Rheum.62(1), 132–142 (2010).
  • Wozniak TM, Saunders BM, Ryan AA, Britton WJ. Mycobacterium bovis BCG-specific Th17 cells confer partial protection against Mycobacterium tuberculosis infection in the absence of gamma interferon. Infect. Immun.78(10), 4187–4194 (2010).
  • Babu S, Bhat SQ, Kumar NP, Kumaraswami V, Nutman TB. Regulatory T cells modulate Th17 responses in patients with positive tuberculin skin test results. J. Infect. Dis.201(1), 20–31 (2010).
  • Wejse C, Olesen R, Rabna P et al. Serum 25-hydroxyvitamin D in a West African population of tuberculosis patients and unmatched healthy controls. Am. J. Clin. Nutr.86(5), 1376–1383 (2007).
  • Williams B, Williams AJ, Anderson ST. Vitamin D deficiency and insufficiency in children with tuberculosis. Pediatr. Infect. Dis. J.27(10), 941–942 (2008).
  • Ustianowski A, Shaffer R, Collin S, Wilkinson RJ, Davidson RN. Prevalence and associations of vitamin D deficiency in foreign-born persons with tuberculosis in London. J. Infect.50(5), 432–437 (2005).
  • Wilkinson RJ, Llewelyn M, Toossi Z et al. Influence of vitamin D deficiency and vitamin D receptor polymorphisms on tuberculosis among Gujarati Asians in West London: a case–control study. Lancet355(9204), 618–621 (2000).
  • Talat N, Perry S, Parsonnet J, Dawood G, Hussain R. Vitamin D deficiency and tuberculosis progression. Emerg. Infect. Dis.16(5), 853–855 (2010).
  • Bischoff-Ferrari HA, Kiel DP, Dawson-Hughes B et al. Dietary calcium and serum 25-hydroxyvitamin D status in relation to BMD among U.S. adults. J. Bone Miner. Res.24(5), 935–942 (2009).
  • Ross AC, Manson JE, Abrams SA et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J. Clin. Endocrinol. Metab.96(1), 53–58 (2011).
  • Martineau AR, Honecker FU, Wilkinson RJ, Griffiths CJ. Vitamin D in the treatment of pulmonary tuberculosis. J. Steroid Biochem. Mol. Biol.103(3–5), 793–798 (2007).
  • Nnoaham KE, Clarke A. Low serum vitamin D levels and tuberculosis: a systematic review and meta-analysis. Int. J. Epidemiol.37(1), 113–119 (2008).
  • Martineau AR, Wilkinson RJ, Wilkinson KA et al. A single dose of vitamin D enhances immunity to mycobacteria. Am. J. Respir. Crit. Care Med.176(2), 208–213 (2007).
  • Nursyam EW, Amin Z, Rumende CM. The effect of vitamin D as supplementary treatment in patients with moderately advanced pulmonary tuberculous lesion. Acta Med. Indones.38(1), 3–5 (2006).
  • Martineau AR, Timms PM, Bothamley GH et al. High-dose vitamin D(3) during intensive-phase antimicrobial treatment of pulmonary tuberculosis: a double-blind randomised controlled trial. Lancet377(9761), 242–250 (2011).
  • Wejse C, Gomes VF, Rabna P et al. Vitamin D as supplementary treatment for tuberculosis: a double-blind, randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med.179(9), 843–850 (2009).
  • Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP. Genetics and biology of vitamin D receptor polymorphisms. Gene338(2), 143–156 (2004).
  • Arai H, Miyamoto K, Taketani Y et al. A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J. Bone Miner. Res.12(6), 915–921 (1997).
  • Zhang HQ, Deng A, Guo CF et al. Association between FokI polymorphism in vitamin D receptor gene and susceptibility to spinal tuberculosis in Chinese Han population. Arch. Med. Res.41(1), 46–49 (2010).
  • Gao L, Tao Y, Zhang L, Jin Q. Vitamin D receptor genetic polymorphisms and tuberculosis: updated systematic review and meta-analysis. Int. J. Tuberc. Lung Dis.14(1), 15–23 (2010).
  • Lewis SJ, Baker I, Davey Smith G. Meta-analysis of vitamin D receptor polymorphisms and pulmonary tuberculosis risk. Int. J. Tuberc. Lung Dis.9(10), 1174–1177 (2005).
  • Soborg C, Andersen AB, Range N et al. Influence of candidate susceptibility genes on tuberculosis in a high endemic region. Mol. Immunol.44(9), 2213–2220 (2007).
  • Schaaf MJ, Cidlowski JA. AUUUA motifs in the 3’UTR of human glucocorticoid receptor α and β mRNA destabilize mRNA and decrease receptor protein expression. Steroids67(7), 627–636 (2002).
  • Ates O, Dolek B, Dalyan L, Musellim B, Ongen G, Topal-Sarikaya A. The association between BsmI variant of vitamin D receptor gene and susceptibility to tuberculosis. Mol. Biol. Rep.38(4), 2633–2636 (2011).
  • Arnaud J, Constans J. Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP). Hum. Genet.92(2), 183–188 (1993).
  • Kamboh MI, Ferrell RE. Ethnic variation in vitamin D-binding protein (GC): a review of isoelectric focusing studies in human populations. Hum. Genet.72(4), 281–293 (1986).
  • Wang TJ, Zhang F, Richards JB et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet376(9736), 180–188 (2010).
  • Ahn J, Yu K, Stolzenberg-Solomon R et al. Genome-wide association study of circulating vitamin D levels. Hum. Mol. Genet.19(13), 2739–2745 (2010).
  • Yamamoto N, Kumashiro R. Conversion of vitamin D3 binding protein (group-specific component) to a macrophage activating factor by the stepwise action of β-galactosidase of B cells and sialidase of T cells. J. Immunol.151(5), 2794–2802 (1993).
  • Mohamad SB, Nagasawa H, Uto Y, Hori H. Preparation of Gc protein-derived macrophage activating factor (GcMAF) and its structural characterization and biological activities. Anticancer Res.22(6C), 4297–4300 (2002).
  • Wood AM, Bassford C, Webster D et al. Vitamin D-binding protein contributes to COPD by activation of alveolar macrophages. Thorax66(3), 205–210 (2011).
  • Martineau AR, Leandro AC, Anderson ST et al. Association between Gc genotype and susceptibility to TB is dependent on vitamin D status. Eur. Respir. J. (2009).
  • Holick MF. Vitamin D status: measurement, interpretation, and clinical application. Ann. Epidemiol. (2008).
  • Dawson-Hughes B, Heaney RP, Holick MF, Lips P, Meunier PJ, Vieth R. Estimates of optimal vitamin D status. Osteoporos. Int.16(7), 713–716 (2005).
  • Dunn JF. Computer simulation of vitamin D transport. Ann. NY Acad. Sci.538, 69–76 (1988).
  • Lauridsen AL, Vestergaard P, Nexo E. Mean serum concentration of vitamin D-binding protein (Gc globulin) is related to the Gc phenotype in women. Clin. Chem.47(4), 753–756 (2001).
  • Gibney KB, MacGregor L, Leder K et al. Vitamin D deficiency is associated with tuberculosis and latent tuberculosis infection in immigrants from sub-Saharan Africa. Clin. Infect. Dis.46(3), 443–446 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.