253
Views
18
CrossRef citations to date
0
Altmetric
Drug Profile

Development of the sodium-glucose co-transporter 2 inhibitor dapagliflozin for the treatment of patients with Type 2 diabetes mellitus

&
Pages 669-683 | Published online: 10 Jan 2014

References

  • American Diabetes Association. Standards of medical care in diabetes. Diabetes Care34(Suppl. 1), S11–S61 (2011).
  • Chan JL, Abrahamson MJ. Pharmacological management of Type 2 diabetes mellitus: rationale for rational use of insulin. Mayo Clin. Proc.78(4), 459–467 (2003).
  • Fowler M. Microvascular and macrovascular complications of diabetes. Clin. Diabetes26(2), 77–82 (2008).
  • Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet. Med.27(2), 136–142 (2010).
  • Bakris GL, Fonseca VA, Sharma K, Wright EM. Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int.75(12), 1272–1277 (2009).
  • Gerich JE, Meyer C, Woerle HJ, Stumvoll M. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care24(2), 382–391 (2001).
  • Owen OE, Felig P, Morgan AP, Wahren J, Cahill GF Jr. Liver and kidney metabolism during prolonged starvation. J. Clin. Invest.48(3), 574–583 (1969).
  • Bjorkman O, Felig P, Wahren J. The contrasting responses of splanchnic and renal glucose output to gluconeogenic substrates and to hypoglucagonemia in 60-h-fasted humans. Diabetes29(8), 610–616 (1980).
  • Ekberg K, Landau BR, Wajngot A et al. Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes48(2), 292–298 (1999).
  • Meyer C, Dostou JM, Gerich JE. Role of the human kidney in glucose counterregulation. Diabetes48(5), 943–948 (1999).
  • Cersosimo E, Garlick P, Ferretti J. Renal glucose production during insulin-induced hypoglycemia in humans. Diabetes48(2), 261–266 (1999).
  • Ross BD, Espinal J, Silva P. Glucose metabolism in renal tubular function. Kidney Int.29(1), 54–67 (1986).
  • Meyer C, Dostou JM, Welle SL, Gerich JE. Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. Am. J. Physiol. Endocrinol. Metab.282(2), E419–E427 (2002).
  • Hediger MA, Kanai Y, You G, Nussberger S. Mammalian ion-coupled solute transporters. J. Physiol.482(Suppl.), 7S–17S (1995).
  • Kanai Y, Lee WS, You G, Brown D, Hediger MA. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J. Clin. Invest.93(1), 397–404 (1994).
  • Bishop JH, Green R, Thomas S. Free-flow reabsorption of glucose, sodium, osmoles and water in rat proximal convoluted tubule. J. Physiol.288, 331–351 (1979).
  • Hediger MA, Rhoads DB. Molecular physiology of sodium-glucose cotransporters. Physiol. Rev.74(4), 993–1026 (1994).
  • Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease. J. Intern. Med.261(1), 32–43 (2007).
  • Ferrannini E. Sodium-glucose transporter-2 inhibition as an antidiabetic therapy. Nephrol. Dial. Transplant.25(7), 2041–2043 (2010).
  • Meyer C, Stumvoll M, Nadkarni V, Dostou J, Mitrakou A, Gerich J. Abnormal renal and hepatic glucose metabolism in Type 2 diabetes mellitus. J. Clin. Invest.102(3), 619–624 (1998).
  • Meyer C, Woerle HJ, Dostou JM, Welle SL, Gerich JE. Abnormal renal, hepatic, and muscle glucose metabolism following glucose ingestion in Type 2 diabetes. Am. J. Physiol. Endocrinol. Metab.287(6), E1049–E1056 (2004).
  • Rahmoune H, Thompson PW, Ward JM, Smith CD, Hong G, Brown J. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes54(12), 3427–3434 (2005).
  • Santer R, Calado J. Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target. Clin. J. Am. Soc. Nephrol.5(1), 133–141 (2010).
  • Scholl-Burgi S, Santer R, Ehrich JH. Long-term outcome of renal glucosuria type 0: the original patient and his natural history. Nephrol. Dial. Transplant.19(9), 2394–2396 (2004).
  • Calado J, Loeffler J, Sakallioglu O et al. Familial renal glucosuria: SLC5A2 mutation analysis and evidence of salt-wasting. Kidney Int.69(5), 852–855 (2006).
  • Calado J, Sznajer Y, Metzger D et al. Twenty-one additional cases of familial renal glucosuria: absence of genetic heterogeneity, high prevalence of private mutations and further evidence of volume depletion. Nephrol. Dial. Transplant.23(12), 3874–3879 (2008).
  • Brown GK. Glucose transporters: structure, function and consequences of deficiency. J. Inherit. Metab. Dis.23(3), 237–246 (2000).
  • Ehrenkranz JR, Lewis NG, Kahn CR, Roth J. Phlorizin: a review. Diabetes Metab. Res. Rev.21(1), 31–38 (2005).
  • Kahn BB, Shulman GI, DeFronzo RA, Cushman SW, Rossetti L. Normalization of blood glucose in diabetic rats with phlorizin treatment reverses insulin-resistant glucose transport in adipose cells without restoring glucose transporter gene expression. J. Clin. Invest.87(2), 561–570 (1991).
  • Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J. Clin. Invest.79(5), 1510–1515 (1987).
  • White JR. Apple trees to sodium glucose co-transporter inhibitors: a review of SGLT2 inhibition. Clin. Diabetes28(1), 5–10 (2010).
  • Marsenic O. Glucose control by the kidney: an emerging target in diabetes. Am. J. Kidney Dis.53(5), 875–883 (2009).
  • Washburn WN. Development of the renal glucose reabsorption inhibitors: a new mechanism for the pharmacotherapy of diabetes mellitus Type 2. J. Med. Chem.52(7), 1785–1794 (2009).
  • Hoerger TJ, Segel JE, Gregg EW, Saaddine JB. Is glycemic control improving in US adults? Diabetes Care31(1), 81–86 (2008).
  • Cheung BM, Ong KL, Cherny SS, Sham PC, Tso AW, Lam KS. Diabetes prevalence and therapeutic target achievement in the United States, 1999 to 2006. Am. J. Med.122(5), 443–453 (2009).
  • Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul. Health Metr.8(1), 29 (2010).
  • Fujimori Y, Katsuno K, Nakashima I, Ishikawa-Takemura Y, Fujikura H, Isaji M. Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models. J. Pharmacol. Exp. Ther.327(1), 268–276 (2008).
  • Fujimori Y, Katsuno K, Ojima K et al. Sergliflozin etabonate, a selective SGLT2 inhibitor, improves glycemic control in streptozotocin-induced diabetic rats and Zucker fatty rats. Eur. J. Pharmacol.609(1–3), 148–154 (2009).
  • Dobbins RL, Kapur A, Kapitza C, O’Connor-Semmes RL, Tao W, Hussey EK. Remogliflozin etabonate, a selective inhibitor of the sodium-glucose transporter 2 (SGLT2) reduces serum glucose in Type 2 diabetes mellitus (T2DM) patients. Diabetes59(Suppl. 1), (2010) (Abstract 573-P).
  • Hussey EK, Kapur A, O’Connor-Semmes RL, Tao W, Poo JL, Dobbins RL. Safety, pharmacokinetics and pharmacodynamics of remogliflozin etabonate (SGLT2 inhibitor) and metformin when co-administered in Type 2 diabetes mellitus (T2DM) patients. Diabetes59(Suppl. 1), (2010) (Abstract 564-P).
  • Hussey EK, Clark RV, Amin DM et al. Single-dose pharmacokinetics and pharmacodynamics of sergliflozin etabonate, a novel inhibitor of glucose reabsorption, in healthy volunteers and patients with Type 2 diabetes mellitus. J. Clin. Pharmacol.50(6), 623–635 (2010).
  • Obermeier M, Yao M, Khanna A et al.In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans. Drug Metab. Dispos.38(3), 405–414 (2010).
  • Bellamine A, Smarsh M, Onorato J et al. Dapagliflozin (BMS-512148) is a competitive, selective and reversible inhibitor of human SGLT2. Presented at: Biomedical Transporters Conference. Thun, Switzerland, 9–13 August 2009.
  • Han S, Hagan DL, Taylor JR et al. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes57(6), 1723–1729 (2008).
  • Meng W, Ellsworth BA, Nirschl AA et al. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J. Med. Chem.51(5), 1145–1149 (2008).
  • Komoroski B, Vachharajani N, Boulton D et al. Dapagliflozin, a novel SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin. Pharmacol. Ther.85(5), 520–526 (2009).
  • Komoroski B, Vachharajani N, Feng Y, Li L, Kornhauser D, Pfister M. Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus. Clin. Pharmacol. Ther.85(5), 513–519 (2009).
  • Feng Y, Zhang L, Komoroski B, Pfister M. Population pharmacokinetic analysis of dapagliflozin in healthy and subjects with type 2 diabetes mellitus. Clin. Pharmacol. Ther.83(Suppl. 1), (2008) (Abstact s93).
  • Kasichayanula S, Liu X, Shyu WC et al. Lack of pharmacokinetic interaction between dapagliflozin, a novel sodium-glucose transporter 2 inhibitor, and metformin, pioglitazone, glimepiride or sitagliptin in healthy subjects. Diabetes Obes. Metab.13(1), 47–54 (2011).
  • List JF, Woo V, Morales E, Tang W, Fiedorek FT. Sodium-glucose cotransport inhibition with dapagliflozin in Type 2 diabetes. Diabetes Care32(4), 650–657 (2009).
  • Wilding JP, Norwood P, T’Joen C, Bastien A, List JF, Fiedorek FT. A study of dapagliflozin in patients with type 2 diabetes receiving high doses of insulin plus insulin sensitizers: applicability of a novel insulin-independent treatment. Diabetes Care32(9), 1656–1662 (2009).
  • Zhang L, Feng Y, List J, Kasichayanula S, Pfister M. Dapagliflozin treatment in patients with different stages of Type 2 diabetes mellitus: effects on glycaemic control and body weight. Diabetes Obes. Metab.12(6), 510–516 (2010).
  • Ferrannini E, Ramos SJ, Salsali A, Tang W, List JF. Dapagliflozin monotherapy in Type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, Phase 3 trial. Diabetes Care33(10), 2217–2224 (2010).
  • Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of dapagliflozin in patients with Type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet375(9733), 2223–2233 (2010).
  • Strojek K, Yoon K, Hruba V, Elze M, Langkilde A, Parikh S. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomised, 24-week, double-blind, placebo-controlled trial. Diabetes Obes. Metab.13(10), 928–938 (2011).
  • Wilding JPH, Woo V, Pahor A, Sugg J, Langkilde A, Parikh S. Effect of dapagliflozin, a novel insulin-independent treatment, over 48 weeks in patients with type 2 diabetes poorly controlled with insulin. Diabetologia53(Suppl. 1), (2010) (Abstract s348).
  • Nauck MA, Del Prato S, Meier JJ et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care34(9), 2015–2022 (2011).
  • Hinnen D, Parikh S, Ying L, Sugg J, List J. Dapagliflozin as monotherapy or as add-on therapy improves glycemic control in patients with Type 2 diabetes. Presented at: American Academy of Nurse Practitioners 26th National Conference. Las Vegas, NV, USA, 22–26 June 2011.
  • Shah BR, Hux JE. Quantifying the risk of infectious diseases for people with diabetes. Diabetes Care26(2), 510–513 (2003).
  • Muller LM, Gorter KJ, Hak E et al. Increased risk of common infections in patients with Type 1 and Type 2 diabetes mellitus. Clin. Infect. Dis.41(3), 281–288 (2005).
  • Hoepelman AIM, Meiland R, Geerlings SE. Pathogenesis and management of bacterial urinary tract infections in adult patients with diabetes mellitus. Int. J. Antimicrob. Agents22, s35–s43 (2003).
  • Boyko EJ, Lipsky BA. Infection and diabetes. In: Infection and diabetes (2nd Edition). Harris MI, Cowie CC, Stern MP, Boyko EJ, Reiber GE, Bennet PH (Eds). National Institutes of Health, Bethesda, MD, USA, 485–499 (1995).
  • List J, Ley S, Ptaszynska A et al. Characterization of genital infections in the setting of pharmacologically induced glucosuria. Presented at: American Diabetes Association 71st Scientific Sessions. San Diego, CA, USA, 24–28 June 2011.
  • Pfister M, Whaley JM, Zhang L, List JF. Inhibition of SGLT2: a novel strategy for treatment of Type 2 diabetes mellitus. Clin. Pharmacol. Ther.89(4), 621–625 (2011).
  • Bailey CJ, Gross JL, Yadav M, Iqbal N, Mansfield TA, List JF. Long-term efficacy of dapagliflozin as add-on to metformin (MET) in T2DM inadequately controlled with MET alone. Presented at: American Diabetes Association 71st Scientific Sessions. San Diego, CA, USA, 24–28 June 2011.
  • Nauck M, Del Prato S, Rohwedder K, Theuerkauf A, Langkilde AM, Parikh SJ. Long-term efficacy and safety of add-on dapagliflozin vs add-on glipizide in patients with T2DM inadequately controlled with metformin: 2-year results. Presented at: American Diabetes Association 71st Scientific Sessions. San Diego, CA, USA, 24–28 June 2011.
  • Parikh S, Johnsson KM, Ptaszynska A, Schmitz B, Sugg JE, List JF. Characterization of urinary tract infections in the setting of pharmacologically induced glucosuria. Presented at: American Diabetes Association 71st Scientific Sessions. San Diego, CA, USA, 24–28 June 2011.
  • Chen J, Williams S, Ho S et al. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Therapy1(2), 57–92 (2010).
  • Macdonald FR, Peel JE, Jones HB et al. The novel sodium glucose transporter 2 inhibitor dapagliflozin sustains pancreatic function and preserves islet morphology in obese, diabetic rats. Diabetes Obes. Metab.12(11), 1004–1012 (2010).
  • Rosenstock J, Polodori D, Zhao Y et al. Canagliflozin, an inhibitor of sodium glucose co-transporter 2, improves glycaemic control, lowers body weight, and improves β cell function in subjects with Type 2 diabetes on background metformin. Diabetologia53(Suppl. 1), (2010) (Abstract S351).
  • Salsali A, Bastien A, Mansfield T, Ying L, Ravichandran S, List J. Dapagliflozin improves hyperglycemia and β-cell function without increasing hypoglycemic episodes in patients with Type 2 diabetes mellitus. Presented at: American Association of Clinical Endocrinologists, 20th Annual Meeting and Clinical Congress. San Diego, CA, USA, 13–17 April 2011.
  • Rossing P, de Zeeuw D. Need for better diabetes treatment for improved renal outcome. Kidney Int.79(Suppl. 120), S28–S32 (2011).
  • Ferrannini E, Seman LJ, Seewaldt-Becker E, Hantel S, Pinnetti S, Woerle HJ. The potent and highly selective sodium-glucose co-transporter (SGLT-2) inhibitor BI10773 is safe and efficacious as monotherapy in patients with Type 2 diabetes mellitus. Diabetologia53(Suppl. 1), (2010) (Abstract S351).
  • Kashiwaga A, Utsuno A, Kazuta K, Yoshida S, Kageyama S. ASP1941, selective SGLT2 inhibitor, was effective and safe in Japanese healthy volunteers and patients with type 2 diabetes [abstract]. Diabetes59(Suppl. 1), 75-OR (2010).
  • Schwartz S, Morrow L, Hompesch M et al. Canagliflozin improves glycemic control in subjects with Type 2 diabetes (T2D) not optimally controlled on stable doses of insulin. Diabetes59(Suppl. 1), (2010) (Abstract 564-P).
  • Sha S, Devineni D, Ghosh A et al. Canagliflozin, a novel inhibitor of sodium glucose co-transporter-2, improves glucose control in subjects with type 2 diabetes and was well tolerated. Diabetes59(Suppl. 1), (2010) (Abstract 568-P).
  • Schwartz S, Klasen S, Kowalski D, Akinlade B. ASP1941, a novel and selective inhibitor of sodium-glucose co-transporter 2 (SGLT2), reduces fasting plasma glucose in Type 2 diabetes mellitus patients over 28 days. Diabetes59(Suppl. 1), (2010) (Abstract 566P).
  • Wilding JPH, Woo V, Soler NG, Pahor A, Sugg J, Parikh S. Dapagliflozin in patients with Type 2 diabetes poorly controlled on insulin therapy—efficacy of a novel insulin-independent treatment. Diabetes59(Suppl. 1), (2010) (Abstract 78-OR).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.