131
Views
17
CrossRef citations to date
0
Altmetric
Drug Profile

Teriflunomide for oral therapy in multiple sclerosis

, &
Pages 617-628 | Published online: 10 Jan 2014

References

  • Alldred A, Emery P. Leflunomide: a novel DMARD for the treatment of rheumatoid arthritis. Expert Opin. Pharmacother. 2(1), 125–137 (2001).
  • Bartlett RR, Schleyerbach R. Immunopharmacological profile of a novel isoxazol derivative, HWA 486, with potential antirheumatic activity–I. Disease modifying action on adjuvant arthritis of the rat. Int. J. Immunopharmacol. 7(1), 7–18 (1985).
  • Kaplan MJ. Leflunomide Aventis Pharma. Curr. Opin. Investig. Drugs 2(2), 222–230 (2001).
  • Kaltwasser JP, Nash P, Gladman D et al.; Treatment of Psoriatic Arthritis Study Group. Efficacy and safety of leflunomide in the treatment of psoriatic arthritis and psoriasis: a multinational, double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum. 50(6), 1939–1950 (2004).
  • Bartlett RR, Anagnostopulos H, Zielinski T, Mattar T, Schleyerbach R. Effects of leflunomide on immune responses and models of inflammation. Springer Semin. Immunopathol. 14(4), 381–394 (1993).
  • Griffith DA, Jarvis SM. Nucleoside and nucleobase transport systems of mammalian cells. Biochim. Biophys. Acta 1286(3), 153–181 (1996).
  • Henderson JF, Paterson ARP. Nucleotide Metabolism – An Introduction. Academic Press, NY, USA (1973).
  • Breedveld FC, Dayer JM. Leflunomide: mode of action in the treatment of rheumatoid arthritis. Ann. Rheum. Dis. 59(11), 841–849 (2000).
  • Cherwinski HM, Cohn RG, Cheung P et al. The immunosuppressant leflunomide inhibits lymphocyte proliferation by inhibiting pyrimidine biosynthesis. J. Pharmacol. Exp. Ther. 275(2), 1043–1049 (1995).
  • Greene S, Watanabe K, Braatz-Trulson J, Lou L. Inhibition of dihydroorotate dehydrogenase by the immunosuppressive agent leflunomide. Biochem. Pharmacol. 50(6), 861–867 (1995).
  • Fairbanks LD, Bofill M, Ruckemann K, Simmonds HA. Importance of ribonucleotide availability to proliferating T-lymphocytes from healthy humans. Disproportionate expansion of pyrimidine pools and contrasting effects of de novo synthesis inhibitors. J. Biol. Chem. 270(50), 29682–29689 (1995).
  • Herrmann ML, Schleyerbach R, Kirschbaum BJ. Leflunomide: an immunomodulatory drug for the treatment of rheumatoid arthritis and other autoimmune diseases. Immunopharmacology 47(2–3), 273–289 (2000).
  • Rückemann K, Fairbanks LD, Carrey EA et al. Leflunomide inhibits pyrimidine de novo synthesis in mitogen-stimulated T-lymphocytes from healthy humans. J. Biol. Chem. 273(34), 21682–21691 (1998).
  • Kent C, Carman GM, Spence MW, Dowhan W. Regulation of eukaryotic phospholipid metabolism. FASEB J. 5(9), 2258–2266 (1991).
  • Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin. Exp. Immunol. 162(1), 1–11 (2010).
  • Hirotani M, Niino M, Sasaki H. The role of B cells in multiple sclerosis: implications for B-cell-targeted therapy. Curr. Med. Chem. 17(28), 3215–3222 (2010).
  • Elder RT, Xu X, Williams JW, Gong H, Finnegan A, Chong AS. The immunosuppressive metabolite of leflunomide, A77 1726, affects murine T cells through two biochemical mechanisms. J. Immunol. 159(1), 22–27 (1997).
  • González-Alvaro I, Ortiz AM, Domínguez-Jiménez C, Aragón-Bodi A, Díaz Sánchez B, Sánchez-Madrid F. Inhibition of tumour necrosis factor and IL-17 production by leflunomide involves the JAK/STAT pathway. Ann. Rheum. Dis. 68(10), 1644–1650 (2009).
  • Siemasko K, Chong AS, Jäck HM, Gong H, Williams JW, Finnegan A. Inhibition of JAK3 and STAT6 tyrosine phosphorylation by the immunosuppressive drug leflunomide leads to a block in IgG1 production. J. Immunol. 160(4), 1581–1588 (1998).
  • Nelson BH, Lord JD, Greenberg PD. Cytoplasmic domains of the interleukin-2 receptor b and g chains mediate the signal for T-cell proliferation. Nature 369(6478), 333–336 (1994).
  • Russell SM, Johnston JA, Noguchi M et al. Interaction of IL-2R β and γ c chains with Jak1 and Jak3: implications for XSCID and XCID. Science 266(5187), 1042–1045 (1994).
  • Stein BL, Crispino JD, Moliterno AR. Janus kinase inhibitors: an update on the progress and promise of targeted therapy in the myeloproliferative neoplasms. Curr. Opin. Oncol. 23(6), 609–616 (2011).
  • West K. CP-690550, a JAK3 inhibitor as an immunosuppressant for the treatment of rheumatoid arthritis, transplant rejection, psoriasis and other immune-mediated disorders. Curr. Opin. Investig. Drugs 10(5), 491–504 (2009).
  • Jiang Z, Li H, Fitzgerald DC, Zhang GX, Rostami A. MOG(35–55) i.v suppresses experimental autoimmune encephalomyelitis partially through modulation of Th17 and JAK/STAT pathways. Eur. J. Immunol. 39(3), 789–799 (2009).
  • Xu X, Williams JW, Bremer EG, Finnegan A, Chong AS. Inhibition of protein tyrosine phosphorylation in T cells by a novel immunosuppressive agent, leflunomide. J. Biol. Chem. 270(21), 12398–12403 (1995).
  • Mattar T, Kochhar K, Bartlett R, Bremer EG, Finnegan A. Inhibition of the epidermal growth factor receptor tyrosine kinase activity by leflunomide. FEBS Lett. 334(2), 161–164 (1993).
  • Feng H, Li XY, Zheng JR, Gao JW, Xu LF, Tang MY. Inhibition of the nuclear factor-kB signaling pathway by leflunomide or triptolide also inhibits the anthralin-induced inflammatory response but does not affect keratinocyte growth inhibition. Biol. Pharm. Bull. 28(9), 1597–1602 (2005).
  • Manna SK, Aggarwal BB. Immunosuppressive leflunomide metabolite (A77 1726) blocks TNF-dependent nuclear factor-𝛋 B activation and gene expression. J. Immunol. 162(4), 2095–2102 (1999).
  • Manna SK, Mukhopadhyay A, Aggarwal BB. Leflunomide suppresses TNF-induced cellular responses: effects on NF-𝛋 B, activator protein-1, c-Jun N-terminal protein kinase, and apoptosis. J. Immunol. 165(10), 5962–5969 (2000).
  • Papadopoulou A, D’Souza M, Kappos L, Yaldizli O. Dimethyl fumarate for multiple sclerosis. Expert Opin. Investig. Drugs 19(12), 1603–1612 (2010).
  • Hamilton LC, Vojnovic I, Warner TD. A771726, the active metabolite of leflunomide, directly inhibits the activity of cyclo-oxygenase-2 in vitro and in vivo in a substrate-sensitive manner. Br. J. Pharmacol. 127(7), 1589–1596 (1999).
  • Muthian G, Raikwar HP, Johnson C et al. COX-2 inhibitors modulate IL-12 signaling through JAK-STAT pathway leading to Th1 response in experimental allergic encephalomyelitis. J. Clin. Immunol. 26(1), 73–85 (2006).
  • Siemasko KF, Chong AS, Williams JW, Bremer EG, Finnegan A. Regulation of B cell function by the immunosuppressive agent leflunomide. Transplantation 61(4), 635–642 (1996).
  • Cherwinski HM, McCarley D, Schatzman R, Devens B, Ransom JT. The immunosuppressant leflunomide inhibits lymphocyte progression through cell cycle by a novel mechanism. J. Pharmacol. Exp. Ther. 272(1), 460–468 (1995).
  • Bartlett RR, Dimitrijevic M, Mattar T et al. Leflunomide (HWA 486), a novel immunomodulating compound for the treatment of autoimmune disorders and reactions leading to transplantation rejection. Agents Actions 32(1–2), 10–21 (1991).
  • Layseca-Espinosa E, Pedraza-Alva G, Montiel JL et al. T cell aggregation induced through CD43: intracellular signals and inhibition by the immunomodulatory drug leflunomide. J. Leukoc. Biol. 74(6), 1083–1093 (2003).
  • Korn T, Magnus T, Toyka K, Jung S. Modulation of effector cell functions in experimental autoimmune encephalomyelitis by leflunomide–mechanisms independent of pyrimidine depletion. J. Leukoc. Biol. 76(5), 950–960 (2004).
  • Dimitrova P, Skapenko A, Herrmann ML, Schleyerbach R, Kalden JR, Schulze-Koops H. Restriction of de novo pyrimidine biosynthesis inhibits Th1 cell activation and promotes Th2 cell differentiation. J. Immunol. 169(6), 3392–3399 (2002).
  • Zeyda M, Poglitsch M, Geyeregger R et al. Disruption of the interaction of T cells with antigen-presenting cells by the active leflunomide metabolite teriflunomide: involvement of impaired integrin activation and immunologic synapse formation. Arthritis Rheum. 52(9), 2730–2739 (2005).
  • Shapiro S, Galboiz Y, Lahat N, Kinarty A, Miller A. The ‘immunological-synapse’ at its APC side in relapsing and secondary-progressive multiple sclerosis: modulation by interferon-β. J. Neuroimmunol. 144(1–2), 116–124 (2003).
  • Gold R, Linington C, Lassmann H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129(Pt 8), 1953–1971 (2006).
  • McMonagle-Strucko K, Hanak S, Pu SF et al. Teriflunomide reduces neurological behaviour and pathology in the Dark Agouti rat model of experimental autoimmune encephalomyelitis. Mult. Scler. 15, Abstract P833, (2009).
  • Mc Monagle-Strucko K, Ji Z, Petty M et al. Effects of prophylactic teriflunomide in transcranial magnetic stimulation-induced motor evoked potentials in the DA-rat model of experimental autoimmune encephalomyelitis. Mult. Scler. 17, Abstract P541 (2011).
  • Petty M, Lee L, Ying X et al. Teriflunomide treatment reduces infiltration of macrophages, t cells and b cells and increases survival of oligodendrocytes in the spinal cord of the dakr agouti rat model of experimental allergic encephalomyelitis. Neurology 74, Abstract P05 033 (2010).
  • Limsakun T, Menguy-Vacheron F. Pharmacokinetics of oral teriflunomide, a novel oral disease-modifying agent under investigation for the treatment of multiple sclerosis. Neurology 74, Abstract P05 032 (2010).
  • De Santis M, Straface G, Cavaliere A, Carducci B, Caruso A. Paternal and maternal exposure to leflunomide: pregnancy and neonatal outcome. Ann. Rheum. Dis. 64(7), 1096–1097 (2005).
  • O’Connor PW, Li D, Freedman MS et al.; Teriflunomide Multiple Sclerosis Trial Group; University of British Columbia MS/MRI Research Group. A Phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses. Neurology 66(6), 894–900 (2006).
  • O’Connor P, Wolinsky JS, Confavreux C et al.; TEMSO Trial Group. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N. Engl. J. Med. 365(14), 1293–1303 (2011).
  • Rahmlow M, Shuster EA, Dominik J et al. Leflunomide-associated progressive multifocal leukoencephalopathy. Arch. Neurol. 65(11), 1538–1539 (2008).
  • Warnatz K, Peter HH, Schumacher M et al. Infectious CNS disease as a differential diagnosis in systemic rheumatic diseases: three case reports and a review of the literature. Ann. Rheum. Dis. 62(1), 50–57 (2003).
  • Brent RL. Teratogen update: reproductive risks of leflunomide (Arava); a pyrimidine synthesis inhibitor: counseling women taking leflunomide before or during pregnancy and men taking leflunomide who are contemplating fathering a child. Teratology 63(2), 106–112 (2001).
  • Fukushima R, Kanamori S, Hirashiba M et al. Inhibiting the teratogenicity of the immunosuppressant leflunomide in mice by supplementation of exogenous uridine. Toxicol. Sci. 108(2), 419–426 (2009).
  • Boothby LA, Doering PL. FDA labeling system for drugs in pregnancy. Ann. Pharmacother. 35(11), 1485–1489 (2001).
  • Chambers CD, Johnson DL, Robinson LK et al.; Organization of Teratology Information Specialists Collaborative Research Group. Birth outcomes in women who have taken leflunomide during pregnancy. Arthritis Rheum. 62(5), 1494–1503 (2010).
  • Kieseier B, Mednikova Z, Trabelsi N, Stüve O. Pregnancy outcomes from the teriflunomide treatment: retrospective analysis of a global pharmacovigilance database. Mult. Scler. 17, Abstract P472 (2011).
  • Confavreux C, Li DK, Freedman MS et al.; for the Teriflunomide Multiple Sclerosis Trial Group. Long-term follow-up of a Phase II study of oral teriflunomide in relapsing multiple sclerosis: safety and efficacy results up to 8.5 years. Mult. Scler. 18(9), 1278–1289 (2012).
  • Li D, O’Connor P, Confavreux C, Byrnes WJ, Wang S, Traboulsee AL; Teriflunomide Multiple Sclerosis Trial Group. Long-term brain MRI and clinical assessments of teriflunomide for the treatment of multiple sclerosis: extension of a Phase II study. Mult. Scler. 16, S142 (2010).
  • Ebers GC, PRISMS (Prevention of Relapses and Disability by Interferon 𝛃-1a Subcutaneously in Multiple Sclerosis) Study Group. Randomised double-blind placebo-controlled study of interferon 𝛃-1a in relapsing/remitting multiple sclerosis. Lancet 352, 1498–1504 (1998).
  • Johnson KP, Brooks BR, Cohen JA et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a Phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45(7), 1268–1276 (1995).
  • The IFNB Multiple Sclerosis Study Group. Interferon b-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43(4), 655–661 (1993).
  • Miller A, O’Connor P, Wolinsky J et al; Teriflunomide Multiple Sclerosis Trial Group. Efficacy of oral teriflunomide in multiple sclerosis with relapses: cognitive outcomes from a Phase III trial (TEMSO). Mult. Scler. 17, Abstract P438 (2011).
  • Comi G, O’Connor P, Wolinsky J et al; Teriflunomide Multiple Sclerosis Trial Group. Efficacy of oral teriflunomide in multiple sclerosis with relapses: cognitive outcomes from a Phase III trial (TEMSO). Mult. Scler. 17, Abstract P439 (2011).
  • O’Connor P, Wolinsky JS, Confavreux C et al.; Teriflunomide Multiple Sclerosis Trial Group. Extension of a Phase III trial (TEMSO) of oral teriflunomide in multiple sclerosis with relapses: clinical and MRI data 5 years after initial randomisation. Mult. Scler. 17, Abstract P924 (2011).
  • Vermersch P, Czlonkowska A, Grimaldi L; TENERE Trial Group. Evaluation of patient satisfaction from the TENERE study: a comparison of teriflunomide and subcutaneous interferon b-1a in patients with relapsing multiple sclerosis. Presented at: 22nd Meeting of the European Neurological Society. Prague, Czech Republic, 9–12 June 2012.
  • Freedman MS, Wolinsky JS, Wamil B et al.; For the Teriflunomide Multiple Sclerosis Trial Group and the MRI Analysis Center. Teriflunomide added to interferon-ß in relapsing multiple sclerosis: a randomized Phase II trial. Neurology 78(23), 1877–1885 (2012).
  • Freedman M, Wolinsky JS, Frangin GA et al. Oral teriflunomide or placebo added to glatiramer acetate for 6 months in patients with relapsing multiple sclerosis: safety and efficacy results. Neurology 74, Abstract S21 001 (2010).
  • Gold R, Kappos L, Bar-Or A et al. Clinical efficacy of BG-12, an oral therapy, in relapsing-remitting multiple sclerosis: data from the Phase 3 DEFINE trial. Mult. Scler. 17, Abstract 95 (2011).
  • Kappos L, Radue EW, O’Connor P et al.; FREEDOMS Study Group. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362(5), 387–401 (2010).
  • Cohen JA, Barkhof F, Comi G et al.; TRANSFORMS Study Group. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362(5), 402–415 (2010).
  • MacManus DG, Miller DH, Kappos L et al. BG-12 reduces evolution of new enhancing lesions to T1-hypointense lesions in patients with multiple sclerosis. J. Neurol. 258(3), 449–456 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.