244
Views
9
CrossRef citations to date
0
Altmetric
Review

Modeling schizophrenia: uncovering novel therapeutic targets

, &
Pages 667-676 | Published online: 10 Jan 2014

References

  • Carpenter WT Jr, Buchanan RW. Schizophrenia. N. Engl. J. Med. 330(10), 681–690 (1994).
  • Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol. Psychiatry (2012) (In Press).
  • Manschreck TC, Boshes RA. The CATIE schizophrenia trial: results, impact, controversy. Harv. Rev. Psychiatry 15(5), 245–258 (2007).
  • Lieberman JA, Bymaster FP, Meltzer HY et al. Antipsychotic drugs: comparison in animal models of efficacy, neurotransmitter regulation, and neuroprotection. Pharmacol. Rev. 60(3), 358–403 (2008).
  • Tsai GE, Lin PY. Strategies to enhance N-methyl-D-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr. Pharm. Des. 16(5), 522–537 (2010).
  • Lin CH, Lane HY, Tsai GE. Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol. Biochem. Behav. 100(4), 665–677 (2012).
  • Goff DC. D-cycloserine: an evolving role in learning and neuroplasticity in schizophrenia. Schizophr. Bull. 38(5), 936–941 (2012).
  • Buchanan RW, Javitt DC, Marder SR et al. The Cognitive and Negative Symptoms in Schizophrenia Trial (CONSIST): the efficacy of glutamatergic agents for negative symptoms and cognitive impairments. Am. J. Psychiatry 164(10), 1593–1602 (2007).
  • Conley RR, Kelly DL. Management of treatment resistance in schizophrenia. Biol. Psychiatry 50(11), 898–911 (2001).
  • Fakra E, Azorin JM. Clozapine for the treatment of schizophrenia. Expert Opin. Pharmacother. 13(13), 1923–1935 (2012).
  • Baker M. Animal models: inside the minds of mice and men. Nature 475(7354), 123–128 (2011).
  • Arguello PA, Markx S, Gogos JA, Karayiorgou M. Development of animal models for schizophrenia. Dis. Model. Mech. 3(1–2), 22–26 (2010).
  • Thaker GK. Neurophysiological endophenotypes across bipolar and schizophrenia psychosis. Schizophr. Bull. 34(4), 760–773 (2008).
  • Boks MP, Leask S, Vermunt JK, Kahn RS. The structure of psychosis revisited: the role of mood symptoms. Schizophr. Res. 93(1–3), 178–185 (2007).
  • Nasrallah H, Tandon R, Keshavan M. Beyond the facts in schizophrenia: closing the gaps in diagnosis, pathophysiology, and treatment. Epidemiol. Psychiatr. Sci. 20(4), 317–327 (2011).
  • Malhotra AK, Pinals DA, Weingartner H et al. NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14(5), 301–307 (1996).
  • Krystal JH, Karper LP, Seibyl JP et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51(3), 199–214 (1994).
  • Pratt JA, Winchester C, Egerton A, Cochran SM, Morris BJ. Modelling prefrontal cortex deficits in schizophrenia: implications for treatment. Br. J. Pharmacol. 153(Suppl. 1), S465–S470 (2008).
  • Chatterjee M, Ganguly S, Srivastava M, Palit G. Effect of ‘chronic’ versus ‘acute’ ketamine administration and its ‘withdrawal’ effect on behavioural alterations in mice: implications for experimental psychosis. Behav. Brain Res. 216(1), 247–254 (2011).
  • McEwen BS. Stress, sex, and neural adaptation to a changing environment: mechanisms of neuronal remodeling. Ann. NY Acad. Sci. 1204(Suppl.), E38–E59 (2010).
  • Stiles J. Brain development and the nature versus nurture debate. Prog. Brain Res. 189, 3–22 (2011).
  • McEwen BS, Gianaros PJ. Stress- and allostasis-induced brain plasticity. Annu. Rev. Med. 62, 431–445 (2011).
  • Wolf C, Linden DE. Biological pathways to adaptability – interactions between genome, epigenome, nervous system and environment for adaptive behavior. Genes Brain Behav. 11(1), 3–28 (2012).
  • Brown AS. Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism. Dev. Neurobiol. 72(10), 1272–1276 (2012).
  • Lipska BK, Weinberger DR. To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23(3), 223–239 (2000).
  • O’Donnell P. Cortical disinhibition in the neonatal ventral hippocampal lesion model of schizophrenia: new vistas on possible therapeutic approaches. Pharmacol. Ther. 133(1), 19–25 (2012).
  • Sams-Dodd F, Lipska BK, Weinberger DR. Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood. Psychopharmacology (Berl.) 132(3), 303–310 (1997).
  • Lipska BK, Aultman JM, Verma A, Weinberger DR, Moghaddam B. Neonatal damage of the ventral hippocampus impairs working memory in the rat. Neuropsychopharmacology 27(1), 47–54 (2002).
  • Swerdlow NR, Light GA, Breier MR et al. Sensory and sensorimotor gating deficits after neonatal ventral hippocampal lesions in rats. Dev. Neurosci. 34(2–3), 240–249 (2012).
  • Lipska BK, Jaskiw GE, Weinberger DR. Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 9(1), 67–75 (1993).
  • Lecourtier L, Antal MC, Cosquer B et al. Intact neurobehavioral development and dramatic impairments of procedural-like memory following neonatal ventral hippocampal lesion in rats. Neuroscience 207, 110–123 (2012).
  • Gruber AJ, Calhoon GG, Shusterman I, Schoenbaum G, Roesch MR, O’Donnell P. More is less: a disinhibited prefrontal cortex impairs cognitive flexibility. J. Neurosci. 30(50), 17102–17110 (2010).
  • Marquis JP, Goulet S, Doré FY. Neonatal ventral hippocampus lesions disrupt extra-dimensional shift and alter dendritic spine density in the medial prefrontal cortex of juvenile rats. Neurobiol. Learn. Mem. 90(2), 339–346 (2008).
  • Bringas ME, Morales-Medina JC, Flores-Vivaldo Y et al. Clozapine administration reverses behavioral, neuronal, and nitric oxide disturbances in the neonatal ventral hippocampus rat. Neuropharmacology 62(4), 1848–1857 (2012).
  • Chambers RA, Self DW. Motivational responses to natural and drug rewards in rats with neonatal ventral hippocampal lesions: an animal model of dual diagnosis schizophrenia. Neuropsychopharmacology 27(6), 889–905 (2002).
  • Al-Amin HA, Weinberger DR, Lipska BK. Exaggerated MK-801-induced motor hyperactivity in rats with the neonatal lesion of the ventral hippocampus. Behav. Pharmacol. 11(3–4), 269–278 (2000).
  • Lodge DJ, Grace AA. Gestational methylazoxymethanol acetate administration: a developmental disruption model of schizophrenia. Behav. Brain Res. 204(2), 306–312 (2009).
  • Moore H, Jentsch JD, Ghajarnia M, Geyer MA, Grace AA. A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia. Biol. Psychiatry 60(3), 253–264 (2006).
  • Meyer U. Developmental neuroinflammation and schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry (2011).
  • Meyer U, Feldon J. To poly(I:C) or not to poly(I:C): advancing preclinical schizophrenia research through the use of prenatal immune activation models. Neuropharmacology 62(3), 1308–1321 (2012).
  • Vorhees CV, Graham DL, Braun AA et al. Prenatal immune challenge in rats: altered responses to dopaminergic and glutamatergic agents, prepulse inhibition of acoustic startle, and reduced route-based learning as a function of maternal body weight gain after prenatal exposure to poly IC. Synapse 66(8), 725–737 (2012).
  • Zuckerman L, Rehavi M, Nachman R, Weiner I. Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology 28(10), 1778–1789 (2003).
  • Konat GW, Lally BE, Toth AA, Salm AK. Peripheral immune challenge with viral mimic during early postnatal period robustly enhances anxiety-like behavior in young adult rats. Metab. Brain Dis. 26(3), 237–240 (2011).
  • Wolff AR, Cheyne KR, Bilkey DK. Behavioural deficits associated with maternal immune activation in the rat model of schizophrenia. Behav. Brain Res. 225(1), 382–387 (2011).
  • Soumiya H, Fukumitsu H, Furukawa S. Prenatal immune challenge compromises the normal course of neurogenesis during development of the mouse cerebral cortex. J. Neurosci. Res. 89(10), 1575–1585 (2011).
  • Piontkewitz Y, Bernstein HG, Dobrowolny H, Bogerts B, Weiner I, Keilhoff G. Effects of risperidone treatment in adolescence on hippocampal neurogenesis, parvalbumin expression, and vascularization following prenatal immune activation in rats. Brain Behav. Immun. 26(2), 353–363 (2012).
  • Meyer U, Engler A, Weber L, Schedlowski M, Feldon J. Preliminary evidence for a modulation of fetal dopaminergic development by maternal immune activation during pregnancy. Neuroscience 154(2), 701–709 (2008).
  • Dean OM, Data-Franco J, Giorlando F, Berk M. Minocycline: therapeutic potential in psychiatry. CNS Drugs 26(5), 391–401 (2012).
  • Fumagalli F, Molteni R, Racagni G, Riva MA. Stress during development: impact on neuroplasticity and relevance to psychopathology. Prog. Neurobiol. 81(4), 197–217 (2007).
  • Fabricius K, Helboe L, Fink-Jensen A, Wörtwein G, Steiniger-Brach B. Pharmacological characterization of social isolation-induced hyperactivity. Psychopharmacology (Berl.) 215(2), 257–266 (2011).
  • Wilkinson LS, Killcross SS, Humby T, Hall FS, Geyer MA, Robbins TW. Social isolation in the rat produces developmentally specific deficits in prepulse inhibition of the acoustic startle response without disrupting latent inhibition. Neuropsychopharmacology 10(1), 61–72 (1994).
  • Ferdman N, Murmu RP, Bock J, Braun K, Leshem M. Weaning age, social isolation, and gender, interact to determine adult explorative and social behavior, and dendritic and spine morphology in prefrontal cortex of rats. Behav. Brain Res. 180(2), 174–182 (2007).
  • Powell CM, Miyakawa T. Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol. Psychiatry 59(12), 1198–1207 (2006).
  • Fone KC, Porkess MV. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci. Biobehav. Rev. 32(6), 1087–1102 (2008).
  • Cilia J, Hatcher PD, Reavill C, Jones DN. Long-term evaluation of isolation-rearing induced prepulse inhibition deficits in rats: an update. Psychopharmacology (Berl.) 180(1), 57–62 (2005).
  • Lederbogen F, Kirsch P, Haddad L et al. City living and urban upbringing affect neural social stress processing in humans. Nature 474(7352), 498–501 (2011).
  • Selten JP, Cantor-Graae E. Social defeat: risk factor for schizophrenia? Br. J. Psychiatry 187, 101–102 (2005).
  • Huhman KL. Social conflict models: can they inform us about human psychopathology? Horm. Behav. 50(4), 640–646 (2006).
  • Cao JL, Covington HE 3rd, Friedman AK et al. Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J. Neurosci. 30(49), 16453–16458 (2010).
  • O’Tuathaigh CM, Desbonnet L, Moran PM, Waddington JL. Susceptibility genes for schizophrenia: mutant models, endophenotypes and psychobiology. Curr. Top. Behav. Neurosci. 12, 209–250 (2012).
  • Desbonnet L, Waddington JL, Tuathaigh CM. Mice mutant for genes associated with schizophrenia: common phenotype or distinct endophenotypes? Behav. Brain Res. 204(2), 258–273 (2009).
  • Feuk L, Marshall CR, Wintle RF, Scherer SW. Structural variants: changing the landscape of chromosomes and design of disease studies. Hum. Mol. Genet. 15, R57–R66 (2006).
  • Redon R, Ishikawa S, Fitch KR et al. Global variation in copy number in the human genome. Nature 444(7118), 444–454 (2006).
  • Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 148(6), 1223–1241 (2012).
  • Karayiorgou M, Morris MA, Morrow B et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc. Natl. Acad. Sci. USA 92(17), 7612–7616 (1995).
  • Gothelf D, Feinstein C, Thompson T et al. Risk factors for the emergence of psychotic disorders in adolescents with 22q11.2 deletion syndrome. Am. J. Psychiatry 164(4), 663–669 (2007).
  • Stefansson H, Ophoff RA, Steinberg S et al.; Genetic Risk and Outcome in Psychosis (GROUP). Common variants conferring risk of schizophrenia. Nature 460(7256), 744–747 (2009).
  • Karayiorgou M, Simon TJ, Gogos JA. 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat. Rev. Neurosci. 11(6), 402–416 (2010).
  • Philip N, Bassett A. Cognitive, behavioural and psychiatric phenotype in 22q11.2 deletion syndrome. Behav. Genet. 41(3), 403–412 (2011).
  • Miller BJ, Culpepper N, Rapaport MH, Buckley P. Prenatal inflammation and neurodevelopment in schizophrenia: a review of human studies. Prog. Neuropsychopharmacol. Biol. Psychiatry doi:10.1016/j.pnpbp.2012.03.010 (2012) (Epub ahead of print).
  • Caspi A, Moffitt TE, Cannon M et al. Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biol. Psychiatry 57(10), 1117–1127 (2005).
  • Brown AS. The environment and susceptibility to schizophrenia. Prog. Neurobiol. 93(1), 23–58 (2011).
  • van Os J, Kenis G, Rutten BP. The environment and schizophrenia. Nature 468(7321), 203–212 (2010).
  • O’Tuathaigh CM, Hryniewiecka M, Behan A et al. Chronic adolescent exposure to D-9-tetrahydrocannabinol in COMT mutant mice: impact on psychosis-related and other phenotypes. Neuropsychopharmacology 35(11), 2262–2273 (2010).
  • Oliver PL. Challenges of analysing gene–environment interactions in mouse models of schizophrenia. ScientificWorldJournal. 11, 1411–1420 (2011).
  • Haque FN, Lipina TV, Roder JC, Wong AH. Social defeat interacts with Disc1 mutations in the mouse to affect behavior. Behav. Brain Res. 233(2), 337–344 (2012).
  • Vuillermot S, Joodmardi E, Perlmann T, Ögren SO, Feldon J, Meyer U. Prenatal immune activation interacts with genetic Nurr1 deficiency in the development of attentional impairments. J. Neurosci. 32(2), 436–451 (2012).
  • Abazyan B, Nomura J, Kannan G et al. Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol. Psychiatry 68(12), 1172–1181 (2010).
  • O’Leary C, Desbonnet L, O’Tuathaigh CM et al. Prenatal vs postnatal manipulation in mice with transmembrane deletion of the schizophrenia risk gene neuregulin-1. Presented at: 8th FENS Conference. Barcelona, Spain, 14–18 July 2012.
  • Desbonnet L, O’Tuathaigh C, Clarke G et al. Phenotypic effects of repeated psychosocial stress during adolescence in mice mutant for the schizophrenia risk gene neuregulin-1: a putative model of gene × environment interaction. Brain Behav. Immun. 26(4), 660–671 (2012).
  • O’Connor RM, Dinan TG, Cryan JF. Little things on which happiness depends: microRNAs as novel therapeutic targets for the treatment of anxiety and depression. Mol. Psychiatry 17(4), 359–376 (2012).
  • Didiano D, Hobert O. Molecular architecture of a miRNA-regulated 3´ UTR. RNA 14(7), 1297–1317 (2008).
  • Hunsberger JG, Austin DR, Chen G, Manji HK. MicroRNAs in mental health: from biological underpinnings to potential therapies. Neuromolecular Med. 11(3), 173–182 (2009).
  • Beveridge NJ, Cairns MJ. MicroRNA dysregulation in schizophrenia. Neurobiol. Dis. 46(2), 263–271 (2012).
  • Hansen T, Olsen L, Lindow M et al. Brain expressed microRNAs implicated in schizophrenia etiology. PLoS ONE 2(9), e873 (2007).
  • Ripke S, Sanders AR, Kendler KS et al.; Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43(10), 969–976 (2011).
  • Miller BH, Zeier Z, Xi L et al. MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proc. Natl. Acad. Sci. USA 109(8), 3125–3130 (2012).
  • Garbett KA, Horváth S, Ebert PJ et al. Novel animal models for studying complex brain disorders: BAC-driven miRNA-mediated in vivo silencing of gene expression. Mol. Psychiatry 15(10), 987–995 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.