342
Views
49
CrossRef citations to date
0
Altmetric
Review

Biomarkers as predictors of outcome after cardiac arrest

, , , &
Pages 687-699 | Published online: 10 Jan 2014

References

  • Taccone FS, Donadello K, Beumier M, Scolletta S. When, where and how to initiate hypothermia after adult cardiac arrest. Minerva Anestesiol. 77(9), 927–933 (2011).
  • Zandbergen EG, Hijdra A, Koelman JH et al.; PROPAC Study Group. Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology 66(1), 62–68 (2006).
  • Nolan JP, Neumar RW, Adrie C et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation 79, 350–379 (2008).
  • Bouwes A, Binnekade JM, Kuiper MA et al. Prognosis of coma after therapeutic hypothermia: a prospective cohort study. Ann. Neurol. 71(2), 206–212 (2012).
  • Cronberg T, Rundgren M, Westhall E et al. Neuron-specific enolase correlates with other prognostic markers after cardiac arrest. Neurology 77(7), 623–630 (2011).
  • Bassetti C, Bomio F, Mathis J, Hess CW. Early prognosis in coma after cardiac arrest: a prospective clinical, electrophysiological, and biochemical study of 60 patients. J. Neurol. Neurosurg. Psychiatr. 61(6), 610–615 (1996).
  • Thygesen K, Alpert JS, White HD et al.; Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. Circulation 116(22), 2634–2653 (2007).
  • Voicu S, Sideris G, Deye N et al. Role of cardiac troponin in the diagnosis of acute myocardial infarction in comatose patients resuscitated from out-of-hospital cardiac arrest. Resuscitation 83(4), 452–458 (2012).
  • de Vreede-Swagemakers JJ, Gorgels AP, Dubois-Arbouw WI et al. Circumstances and causes of out-of-hospital cardiac arrest in sudden death survivors. Heart 79(4), 356–361 (1998).
  • Prahash A, Lynch T. B-type natriuretic peptide: a diagnostic, prognostic, and therapeutic tool in heart failure. Am. J. Crit. Care 13(1), 46–53; quiz 54 (2004).
  • Trinquart L, Ray P, Riou B et al. Natriuretic peptide testing in EDs for managing acute dyspnea: a meta-analysis. Am. J. Emerg. Med. 29, 757–767 (2011).
  • Anderson JL, Adams CD, Antman EM et al. ACC/AHA 2007 guidelines for the management of patients with unstable angina/non ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients With Unstable Angina/Non ST-Elevation Myocardial Infarction): developed in collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons: endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine. Circulation 116(7), e148–e304 (2007).
  • Morrow DA, Cannon CP, Jesse RL et al.; National Academy of Clinical Biochemistry. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Circulation 115(13), e356–e375 (2007).
  • Vanderheyden M, Bartunek J, Goethals M. Brain and other natriuretic peptides: molecular aspects. Eur. J. Heart Fail. 6(3), 261–268 (2004).
  • Lai CS, Hostler D, D’Cruz BJ, Callaway CW. Prevalence of troponin-T elevation during out-of-hospital cardiac arrest. Am. J. Cardiol. 93(6), 754–756 (2004).
  • Grubb NR, Fox KA, Cawood P. Resuscitation from out-of-hospital cardiac arrest: implications for cardiac enzyme estimation. Resuscitation 33(1), 35–41 (1996).
  • Müllner M, Hirschl MM, Herkner H et al. Creatine kinase-MB fraction and cardiac troponin T to diagnose acute myocardial infarction after cardiopulmonary resuscitation. J. Am. Coll. Cardiol. 28(5), 1220–1225 (1996).
  • Jaffe AS. The 10 commandments of troponin, with special reference to high sensitivity assays. Heart 97(11), 940–946 (2011).
  • Sideris G, Voicu S, Dillinger JG et al. Value of post-resuscitation electrocardiogram in the diagnosis of acute myocardial infarction in out-of-hospital cardiac arrest patients. Resuscitation 82(9), 1148–1153 (2011).
  • Peberdy MA, Callaway CW, Neumar RW et al. Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 122(18 Suppl. 3), S768–S786 (2010).
  • He X, Su F, Taccone FS, Maciel LK, Vincent JL. Cardiovascular and microvascular responses to mild hypothermia in an ovine model. Resuscitation 83(6), 760–766 (2012).
  • Georges JL, Spentchian M, Caubel C et al. Time course of troponin I, myoglobulin, and cardiac enzyme release after electrical cardioversion. Am. J. Cardiol. 78(7), 825–826 (1996).
  • Oh SH, Kim YM, Kim HJ et al. Implication of cardiac marker elevation in patients who resuscitated from out-of-hospital cardiac arrest. Am. J. Emerg. Med. 30(3), 464–471 (2012).
  • Müllner M, Sterz F, Binder M et al. Creatine kinase and creatine kinase-MB release after nontraumatic cardiac arrest. Am. J. Cardiol. 77(8), 581–585 (1996).
  • Mattana J, Singhal PC. Determinants of elevated creatine kinase activity and creatine kinase MB-fraction following cardiopulmonary resuscitation. Chest 101(5), 1386–1392 (1992).
  • Doust JA, Pietrzak E, Dobson A, Glasziou P. How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: systematic review. BMJ 330(7492), 625 (2005).
  • de Lemos JA, Morrow DA, Bentley JH et al. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N. Engl. J. Med. 345(14), 1014–1021 (2001).
  • Nagao K, Hayashi N, Kanmatsuse K et al. B-type natriuretic peptide as a marker of resuscitation in patients with cardiac arrest outside the hospital. Circ. J. 68(5), 477–482 (2004).
  • Nagao K, Mukoyama T, Kikushima K et al. Resuscitative value of B-type natriuretic peptide in comatose survivors treated with hypothermia after out-of-hospital cardiac arrest due to cardiac causes. Circ. J. 71, 370–376 (2007).
  • Sodeck GH, Domanovits H, Sterz F et al. Can brain natriuretic peptide predict outcome after cardiac arrest? An observational study. Resuscitation 74(3), 439–445 (2007).
  • Hama N, Itoh H, Shirakami G et al. Rapid ventricular induction of brain natriuretic peptide gene expression in experimental acute myocardial infarction. Circulation 92(6), 1558–1564 (1995).
  • Roine RO, Somer H, Kaste M, Viinikka L, Karonen SL. Neurological outcome after out-of-hospital cardiac arrest. Prediction by cerebrospinal fluid enzyme analysis. Arch. Neurol. 46(7), 753–756 (1989).
  • Martens P, Raabe A, Johnsson P. Serum S-100 and neuron-specific enolase for prediction of regaining consciousness after global cerebral ischemia. Stroke. 29(11), 2363–2366 (1998).
  • Meynaar IA, Oudemans-van Straaten HM, van der Wetering J et al. Serum neuron-specific enolase predicts outcome in post-anoxic coma: a prospective cohort study. Intensive Care Med. 29, 189–195 (2003).
  • Auer J, Berent R, Weber T et al. Ability of neuron-specific enolase to predict survival to hospital discharge after successful cardiopulmonary resuscitation. CJEM 8(1), 13–18 (2006).
  • Tiainen M, Roine RO, Pettilä V, Takkunen O. Serum neuron-specific enolase and S-100B protein in cardiac arrest patients treated with hypothermia. Stroke 34(12), 2881–2886 (2003).
  • Fogel W, Krieger D, Veith M et al. Serum neuron-specific enolase as early predictor of outcome after cardiac arrest. Crit. Care Med. 25, 1133–1138 (1997).
  • Wijdicks EF, Hijdra A, Young GB, Bassetti CL, Wiebe S; Quality Standards Subcommittee of the American Academy of Neurology. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 67(2), 203–210 (2006).
  • Daubin C, Quentin C, Allouche S et al. Serum neuron-specific enolase as predictor of outcome in comatose cardiac-arrest survivors: a prospective cohort study. BMC Cardiovasc. Disord. 11, 48 (2011).
  • Reisinger J, Höllinger K, Lang W et al. Prediction of neurological outcome after cardiopulmonary resuscitation by serial determination of serum neuron-specific enolase. Eur. Heart J. 28(1), 52–58 (2007).
  • Zingler VC, Krumm B, Bertsch T, Fassbender K, Pohlmann-Eden B. Early prediction of neurological outcome after cardiopulmonary resuscitation: a multimodal approach combining neurobiochemical and electrophysiological investigations may provide high prognostic certainty in patients after cardiac arrest. Eur. Neurol. 49(2), 79–84 (2003).
  • Rundgren M, Karlsson T, Nielsen N, Cronberg T, Johnsson P, Friberg H. Neuron specific enolase and S-100B as predictors of outcome after cardiac arrest and induced hypothermia. Resuscitation 80(7), 784–789 (2009).
  • Oksanen T, Tiainen M, Skrifvars MB et al. Predictive power of serum NSE and OHCA score regarding 6-month neurologic outcome after out-of-hospital ventricular fibrillation and therapeutic hypothermia. Resuscitation 80, 165–170 (2009).
  • Steffen IG, Hasper D, Ploner CJ et al. Mild therapeutic hypothermia alters neuron specific enolase as an outcome predictor after resuscitation: 97 prospective hypothermia patients compared to 133 historical non-hypothermia patients. Crit. Care 14(2), R69 (2010).
  • Fugate JE, Wijdicks EF, Mandrekar J et al. Predictors of neurologic outcome in hypothermia after cardiac arrest. Ann. Neurol. 68(6), 907–914 (2010).
  • Rossetti AO, Carrera E, Oddo M. Early EEG correlates of neuronal injury after brain anoxia. Neurology 78(11), 796–802 (2012).
  • Rosén H, Rosengren L, Herlitz J, Blomstrand C. Increased serum levels of the S-100 protein are associated with hypoxic brain damage after cardiac arrest. Stroke. 29(2), 473–477 (1998).
  • Pfeifer R, Börner A, Krack A, Sigusch HH, Surber R, Figulla HR. Outcome after cardiac arrest: predictive values and limitations of the neuroproteins neuron-specific enolase and protein S-100 and the Glasgow Coma Scale. Resuscitation 65(1), 49–55 (2005).
  • Rosén H, Sunnerhagen KS, Herlitz J, Blomstrand C, Rosengren L. Serum levels of the brain-derived proteins S-100 and NSE predict long-term outcome after cardiac arrest. Resuscitation 49(2), 183–191 (2001).
  • Böttiger BW, Möbes S, Glätzer R et al. Astroglial protein S-100 is an early and sensitive marker of hypoxic brain damage and outcome after cardiac arrest in humans. Circulation 103(22), 2694–2698 (2001).
  • Mörtberg E, Zetterberg H, Nordmark J, Blennow K, Rosengren L, Rubertsson S. S-100B is superior to NSE, BDNF and GFAP in predicting outcome of resuscitation from cardiac arrest with hypothermia treatment. Resuscitation 82(1), 26–31 (2011).
  • Grubb NR, Simpson C, Sherwood RA et al. Prediction of cognitive dysfunction after resuscitation from out-of-hospital cardiac arrest using serum neuron-specific enolase and protein S-100. Heart 93(10), 1268–1273 (2007).
  • Shinozaki K, Oda S, Sadahiro T et al. Serum S-100B is superior to neuron-specific enolase as an early prognostic biomarker for neurological outcome following cardiopulmonary resuscitation. Resuscitation 80(8), 870–875 (2009).
  • Barone FC, Clark RK, Price WJ et al. Neuron-specific enolase increases in cerebral and systemic circulation following focal ischemia. Brain Res. 623(1), 77–82 (1993).
  • Steinberg R, Gueniau C, Scarna H, Keller A, Worcel M, Pujol JF. Experimental brain ischemia: neuron-specific enolase level in cerebrospinal fluid as an index of neuronal damage. J. Neurochem. 43(1), 19–24 (1984).
  • Mullie A, Verstringe P, Buylaert W et al. Predictive value of Glasgow coma score for awakening after out-of-hospital cardiac arrest. Cerebral Resuscitation Study Group of the Belgian Society for Intensive Care. Lancet 1(8578), 137–140 (1988).
  • Påhlman S, Esscher T, Nilsson K. Expression of 𝛄-subunit of enolase, neuron-specific enolase, in human non-neuroendocrine tumors and derived cell lines. Lab. Invest. 54(5), 554–560 (1986).
  • Beaudeux JL, Léger P, Dequen L, Gandjbakhch I, Coriat P, Foglietti MJ. Influence of hemolysis on the measurement of S-100𝛃 protein and neuron-specific enolase plasma concentrations during coronary artery bypass grafting. Clin. Chem. 46(7), 989–990 (2000).
  • Haimoto H, Hosoda S, Kato K. Differential distribution of immunoreactive S100-𝛂 and S100-𝛃 proteins in normal nonnervous human tissues. Lab. Invest. 57(5), 489–498 (1987).
  • Omran H, Schmidt H, Hackenbroch M et al. Silent and apparent cerebral embolism after retrograde catheterisation of the aortic valve in valvular stenosis: a prospective, randomised study. Lancet 361(9365), 1241–1246 (2003).
  • Tsoporis JN, Marks A, Kahn HJ et al. S100𝛃 inhibits 𝛂1-adrenergic induction of the hypertrophic phenotype in cardiac myocytes. J. Biol. Chem. 272(50), 31915–31921 (1997).
  • Isobe T, Takahashi K, Okuyama T. S100a0 (𝛂 𝛂) protein is present in neurons of the central and peripheral nervous system. J. Neurochem. 43(5), 1494–1496 (1984).
  • Westaby S, Johnsson P, Parry AJ et al. Serum S100 protein: a potential marker for cerebral events during cardiopulmonary bypass. Ann. Thorac. Surg. 61(1), 88–92 (1996).
  • Oertel M, Schumacher U, McArthur DL, Kästner S, Böker DK. S-100B and NSE: markers of initial impact of subarachnoid haemorrhage and their relation to vasospasm and outcome. J. Clin. Neurosci. 13(8), 834–840 (2006).
  • Stein DM, Lindell AL, Murdock KR et al. Use of serum biomarkers to predict cerebral hypoxia after severe traumatic brain injury. J. Neurotrauma 29(6), 1140–1149 (2012).
  • Pelinka LE, Jafarmadar M, Redl H, Bahrami S. Neuron-specific-enolase is increased in plasma after hemorrhagic shock and after bilateral femur fracture without traumatic brain injury in the rat. Shock 22(1), 88–91 (2004).
  • Tirschwell DL, Longstreth WT Jr, Rauch-Matthews ME et al. Cerebrospinal fluid creatine kinase BB isoenzyme activity and neurologic prognosis after cardiac arrest. Neurology 48(2), 352–357 (1997).
  • Longstreth WT Jr, Clayson KJ, Sumi SM. Cerebrospinal fluid and serum creatine kinase BB activity after out-of-hospital cardiac arrest. Neurology 31(4), 455–458 (1981).
  • Clemmensen P, Strandgaard S, Rasmussen S, Grande P. Cerebrospinal fluid creatine kinase isoenzyme BB levels do not predict the clinical outcome in patients unconscious following cardiac resuscitation. Clin. Cardiol. 10(4), 235–236 (1987).
  • Sherman AL, Tirschwell DL, Micklesen PJ, Longstreth WT Jr, Robinson LR. Somatosensory potentials, CSF creatine kinase BB activity, and awakening after cardiac arrest. Neurology 54(4), 889–894 (2000).
  • Kaneko T, Kasaoka S, Miyauchi T et al. Serum glial fibrillary acidic protein as a predictive biomarker of neurological outcome after cardiac arrest. Resuscitation 80(7), 790–794 (2009).
  • Hayashida H, Kaneko T, Kasaoka S et al. Comparison of the predictability of neurological outcome by serum procalcitonin and glial fibrillary acidic protein in postcardiac-arrest patients. Neurocrit. Care 12(2), 252–257 (2010).
  • D’Cruz BJ, Fertig KC, Filiano AJ, Hicks SD, DeFranco DB, Callaway CW. Hypothermic reperfusion after cardiac arrest augments brain-derived neurotrophic factor activation. J. Cereb. Blood Flow Metab. 22(7), 843–851 (2002).
  • Rosén H, Karlsson JE, Rosengren L. CSF levels of neurofilament is a valuable predictor of long-term outcome after cardiac arrest. J. Neurol. Sci. 221(1–2), 19–24 (2004).
  • Vaagenes P, Mullie A, Fodstad DT, Abramson N, Safar P. The use of cytosolic enzyme increase in cerebrospinal fluid of patients resuscitated after cardiac arrest. Brain Resuscitation Clinical Trial I Study Group. Am. J. Emerg. Med. 12(6), 621–624 (1994).
  • Mussack T, Biberthaler P, Kanz KG, Wiedemann E, Gippner-Steppert C, Jochum M. S-100b, sE-selectin, and sP-selectin for evaluation of hypoxic brain damage in patients after cardiopulmonary resuscitation: pilot study. World J. Surg. 25(5), 539–543; discussion 544 (2001).
  • Adrie C, Adib-Conquy M, Laurent I et al. Successful cardiopulmonary resuscitation after cardiac arrest as a ‘sepsis-like’ syndrome. Circulation 106(5), 562–568 (2002).
  • Huet O, Dupic L, Batteux F et al. Postresuscitation syndrome: potential role of hydroxyl radical-induced endothelial cell damage. Crit. Care Med. 39, 1712–1720 (2011).
  • Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit. Care 14(1), R15 (2010).
  • Lobo SM, Lobo FR, Bota DP et al. C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest 123(6), 2043–2049 (2003).
  • Tang H, Huang T, Jing J, Shen H, Cui W. Effect of procalcitonin-guided treatment in patients with infections: a systematic review and meta-analysis. Infection 37(6), 497–507 (2009).
  • Youngquist ST, Niemann JT, Heyming TW, Rosborough JP. The central nervous system cytokine response to global ischemia following resuscitation from ventricular fibrillation in a porcine model. Resuscitation 80(2), 249–252 (2009).
  • Sharma HS, Miclescu A, Wiklund L. Cardiac arrest-induced regional blood-brain barrier breakdown, edema formation and brain pathology: a light and electron microscopic study on a new model for neurodegeneration and neuroprotection in porcine brain. J. Neural Transm. 118(1), 87–114 (2011).
  • Ito T, Saitoh D, Fukuzuka K et al. Significance of elevated serum interleukin-8 in patients resuscitated after cardiopulmonary arrest. Resuscitation 51(1), 47–53 (2001).
  • Fairchild KD, Singh IS, Patel S et al. Hypothermia prolongs activation of NF-kappaB and augments generation of inflammatory cytokines. Am. J. Physiol. Cell Physiol. 287(2), C422–C431 (2004).
  • Fries M, Stoppe C, Brücken D, Rossaint R, Kuhlen R. Influence of mild therapeutic hypothermia on the inflammatory response after successful resuscitation from cardiac arrest. J. Crit. Care 24(3), 453–457 (2009).
  • Bisschops LL, Hoedemaekers CW, Mollnes TE, van der Hoeven JG. Rewarming after hypothermia after cardiac arrest shifts the inflammatory balance. Crit. Care Med. 40(4), 1136–1142 (2012).
  • Samborska-Sablik A, Sablik Z, Gaszynski W. The role of the immuno-inflammatory response in patients after cardiac arrest. Arch. Med. Sci. 7(4), 619–626 (2011).
  • Mussack T, Biberthaler P, Kanz KG et al. Serum S-100B and interleukin-8 as predictive markers for comparative neurologic outcome analysis of patients after cardiac arrest and severe traumatic brain injury. Crit. Care Med. 30(12), 2669–2674 (2002).
  • Oppert M, Gleiter CH, Müller C et al. Kinetics and characteristics of an acute phase response following cardiac arrest. Intensive Care Med. 25(12), 1386–1394 (1999).
  • Los Arcos M, Rey C, Concha A, Medina A, Prieto B. Acute-phase reactants after paediatric cardiac arrest. Procalcitonin as marker of immediate outcome. BMC Pediatr. 8, 18 (2008).
  • Schuetz P, Affolter B, Hunziker S et al. Serum procalcitonin, C-reactive protein and white blood cell levels following hypothermia after cardiac arrest: a retrospective cohort study. Eur. J. Clin. Invest. 40(4), 376–381 (2010).
  • Adib-Conquy M, Monchi M, Goulenok C et al. Increased plasma levels of soluble triggering receptor expressed on myeloid cells 1 and procalcitonin after cardiac surgery and cardiac arrest without infection. Shock 28(4), 406–410 (2007).
  • Fries M, Kunz D, Gressner AM, Rossaint R, Kuhlen R. Procalcitonin serum levels after out-of-hospital cardiac arrest. Resuscitation 59(1), 105–109 (2003).
  • Stammet P, Devaux Y, Azuaje F et al. Assessment of procalcitonin to predict outcome in hypothermia-treated patients after cardiac arrest. Crit. Care Res. Pract. 2011, 631062 (2011).
  • Nielsen N, Sunde K, Hovdenes J et al.; Hypothermia Network. Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit. Care Med. 39(1), 57–64 (2011).
  • Gaussorgues P, Gueugniaud PY, Vedrinne JM, Salord F, Mercatello A, Robert D. Bacteremia following cardiac arrest and cardiopulmonary resuscitation. Intensive Care Med. 14(5), 575–577 (1988).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.