12
Views
10
CrossRef citations to date
0
Altmetric
Drug Profile

Anti-CTLA-4 therapy in melanoma: role of ipilimumab (MDX-010)

&
Pages 199-210 | Published online: 10 Jan 2014

References

  • Marincola FM, Jaffee EM, Hicklin JD, Ferrone S. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv. Immunol.174, 181–273 (2000).
  • Shiozaki A, Kataoka K, Fujimura M, Yuki H, Sakai M, Saito S. Survivin inhibits apoptosis in cytotrophoblasts. Placenta24(1), 65–76 (2003).
  • Ridolfi L, Petrini M, Fiammenghi L, Riccobon A, Ridolfi R. Human embryo immune escape mechanisms rediscovered by the tumor. Immunobiology214(1), 61–76 (2009).
  • Smyth MJ, Dunn GP, Schreiber RD. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv. Immunol.90, 1–50 (2006).
  • Takeda K, Hayakawa Y, Smyth MJ et al. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat. Med.7(1), 94–100 (2001).
  • Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat. Rev. Cancer4(1), 71–78 (2004).
  • Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol.6(11), 836–848 (2006).
  • Bui JD, Schreiber RD. Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr. Opin. Immunol.19(2), 203–208 (2007).
  • Lin EY, Pollard JW. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res.67(11), 5064–5066 (2007).
  • Street SE, Zerafa N, Iezzi M et al. Host perforin reduces tumor number but does not increase survival in oncogene-driven mammary adenocarcinoma. Cancer Res.67(11), 5454–5460 (2007).
  • Stewart TJ, Greeneltch KM, Lutsiak ME, Abrams SI. Immunological responses can have both pro- and antitumour effects: implications for immunotherapy. Expert Rev. Mol. Med.9(4), 1–20 (2007).
  • Moschos S, Varanasi S, Kirkwood JM. Interferons in the treatment of solid tumors. Cancer Treat. Res.126, 207–241 (2005).
  • Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH. Interferon α-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J. Clin. Oncol.14(1), 7–17 (1996).
  • Kirkwood JM, Ibrahim JG, Sondak VK et al. High- and low-dose interferon α-2b in high-risk melanoma:first analysis of intergroup trial E1690/S9111/C9190. J. Clin. Oncol.18(12), 2444–2458 (2000).
  • Moschos SJ, Edington HD, Land SR et al. Neoadjuvant treatment of regional stage IIIB melanoma with high-dose interferon α-2b induces objective tumor regression in association with modulation of tumor infiltrating host cellular immune responses. J. Clin. Oncol.24(19), 3164–3171 (2006).
  • Lui P, Cashin R, Machado M, Hemels M, Corey-Lisle PK, Einarson TR. Treatments for metastatic melanoma: synthesis of evidence from randomized trials. Cancer Treat. Rev.33(8), 665–680 (2007).
  • Kirkwood JM, Tawbi HA, Tarhini AA, Moschos SJ. Does pegylated interferon α-2b confer additional benefit in the adjuvant treatment of high-risk melanoma? Nat. Clin. Pract. Oncol.6(2), 70–71 (2009).
  • Moschos SJ, Mandic M, Kirkwood JM, Storkus WJ, Lotze MT. Focus on FOCIS: interleukin 2 treatment associated autoimmunity. Clin. Immunol.127(2), 123–129 (2008).
  • Atkins MB, Lotze MT, Dutcher JP et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol.17(7), 2105–2116 (1999).
  • Sasse AD, Sasse EC, Clark LG, Ulloa L, Clark OA. Chemoimmunotherapy versus chemotherapy for metastatic malignant melanoma. Cochrane Database Syst. Rev.1, CD005413 (2007).
  • Ives NJ, Stowe RL, Lorigan P, Wheatley K. Chemotherapy compared with biochemotherapy for the treatment of metastatic melanoma: a meta-analysis of 18 trials involving 2,621 patients. J. Clin. Oncol.25(34), 5426–5434 (2007).
  • Dudley ME, Wunderlich JR, Yang JC et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol.23(10), 2346–2357 (2005).
  • Fang L, Lonsdorf AS, Hwang ST. Immunotherapy for advanced melanoma. J. Invest. Dermatol.128(11), 2596–2605 (2008).
  • Dudley ME, Yang JC, Sherry R et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin. Oncol.26(32), 5233–5239. (2008).
  • Sanderson K, Scotland R, Lee P et al. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J. Clin. Oncol.23(4), 741–750 (2005).
  • Cutler CW, Jotwani R, Pulendran B. Dendritic cells: immune saviors or Achilles’ heel? Infect. Immun.69(8), 4703–4708 (2001).
  • Peggs KS, Quezada SA, Allison JP. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol. Rev.224, 141–165 (2008).
  • Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. Adv. Immunol.90, 297–339 (2006).
  • Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat. Rev. Immunol.2(2), 116–126 (2002).
  • Chen J, He Q, Zhang R et al. Allogenic donor splenocytes pretreated with antisense peptide against B7 prolong cardiac allograft survival. Clin. Exp. Immunol.138(2), 245–250 (2004).
  • Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med.5(12), 1365–1369 (1999).
  • Tseng SY, Otsuji M, Gorski K et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J. Exp. Med.193(7), 839–846 (2001).
  • Seliger B, Marincola FM, Ferrone S, Abken H. The complex role of B7 molecules in tumor immunology. Trends Mol. Med.14(12), 550–559 (2008).
  • Brunet JF, Denizot F, Luciani MF et al. A new member of the immunoglobulin superfamily – CTLA-4. Nature328(6127), 267–270 (1987).
  • Dariavach P, Mattéi MG, Golstein P, Lefranc MP. Human Ig superfamily CTLA-4 gene: chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains. Eur. J. Immunol.18(12), 1901–1905 (1988).
  • Thompson CB, Allison JP. The emerging role of CTLA-4 as an immune attenuator. Immunity7(4), 445–450 (1997).
  • Walunas TL, Lenschow DJ, Bakker CY et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity1(5), 405–413 (1994).
  • Kearney ER, Walunas TL, Karr RW et al. Antigen-dependent clonal expansion of a trace population of antigen-specific CD4+ T cells in vivo is dependent on CD28 costimulation and inhibited by CTLA-4. J. Immunol.155(3), 1032–1036 (1995).
  • Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med.182(2), 459–465 (1995).
  • Krummel MF, Sullivan TJ, Allison JP. Superantigen responses and co-stimulation: CD28 and CTLA-4 have opposing effects on T cell expansion in vitro and in vivo. Int. Immunol.8(4), 519–523 (1996).
  • Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity3(5), 541–547 (1995).
  • Waterhouse P, Penninger JM, Timms E et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science270(5238), 985–988 (1995).
  • Chambers CA, Sullivan TJ, Allison JP. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity7(6), 885–895 (1997).
  • Schneider H, Downey J, Smith Aet al. Reversal of the TCR stop signal by CTLA-4. Science313(5795), 1972–1975 (2006).
  • Downey J, Smith A, Schneider H, Hogg N, Rudd CE. TCR/CD3 mediated stop-signal is decoupled in T-cells from Ctla4 deficient mice. Immunol. Lett.115(1), 70–72 (2008).
  • Small EJ, Tchekmedyian NS, Rini BI, Fong L, Lowy I, Allison JP. A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin. Cancer Res.13(6), 1810–1815 (2007).
  • Korman A, Yellin M, Keler T. Tumor immunotherapy: preclinical and clinical activity of anti-CTLA4 antibodies. Curr. Opin. Investig. Drugs6(6), 582–591 (2005).
  • Melero I, Shuford WW, Newby SA et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat. Med.3(6), 682–685 (1997).
  • van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med.190(3), 355–366 (1999).
  • Keler T, Halk E, Vitale L et al. Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J. Immunol.171(11), 6251–6259 (2003).
  • Maker AV, Phan GQ, Attia P et al. Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a Phase I/II study. Ann. Surg. Oncol.12(12), 1005–1016 (2005).
  • Kavanagh B, O’Brien S, Lee D et al. CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4+ T cells in a dose-dependent fashion. Blood112(4), 1175–1183 (2008).
  • Maker AV, Yang JC, Sherry RM et al. Intrapatient dose escalation of anti-CTLA-4 antibody in patients with metastatic melanoma. J. Immunother.29(4), 455–463 (2006).
  • Chambers CA, Sullivan TJ, Truong T, Allison JP. Secondary but not primary T cell responses are enhanced in CTLA-4-deficient CD8+ T cells. Eur. J. Immunol.28(10), 3137–3143 (1998).
  • Jinushi M, Hodi FS, Dranoff G. Therapy-induced antibodies to MHC class I chain-related protein A antagonize immune suppression and stimulate antitumor cytotoxicity. Proc. Natl Acad. Sci. USA103(24), 9190–9195 (2006).
  • Contardi E, Palmisano GL, Tazzari PL et al. CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int. J. Cancer117(4), 538–550 (2005).
  • Hoos A, Chasalow SD, Parker SM et al. Ipilimumab 10mg/kg induction dosing promotes T-cell activation in patients with advanced melanoma. Ann. Oncol.19(8 Suppl.), (2008) (Abstract 785P).
  • Davis TA, Tchekmedyian S, Korman A, Keler T, Deo Y, Small EJ. MDX-010 (human anti-CTLA4): a Phase 1 trial in hormone refractory prostate carcinoma (HRPC). Proc. Am. Soc. Clin. Oncol.21(Suppl.), (2002) (Abstract 74).
  • Tchekmedyian S, Glasby J, Korman A, Keler T, Deo Y, Davis TA. MDX-010 (human anti-CTLA4): a Phase I trial in malignant melanoma. Proc. Am. Soc. Clin. Oncol.21(Suppl.), (2002) (Abstract 56).
  • Hodi FS, Mihm MC, Soiffer RJ et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc. Natl Acad. Sci. USA100(8), 4712–4717 (2003).
  • Weber JS, O’Day S, Urba W et al. Phase I/II Study of ipilimumab for patients with metastatic melanoma. J. Clin. Oncol.26(36), 5950–5956 (2008).
  • Weber JS, Hersh EM, Yellin M et al. The efficacy and safety of ipilimumab (MDX-010) in patients with unresectable stage III or stage IV malignant melanoma. J. Clin. Oncol.25(18 Suppl.), (2007) (Abstract 8523).
  • Lebbe C, Hoos A, Chin K et al. Effect of dose on efficacy and safety in ipilimumab-treated patients with advanced melanoma-results from a Phase II, randomized, dose-ranging study. Ann. Oncol.19(8 Suppl.), (2008) (Abstract 7690).
  • Hamid O, Chin K, Li J et al. Dose effect of ipilimumab in patients with advanced melanoma: results from a Phase II, randomized, dose-ranging study. J. Clin. Oncol.26(20 Suppl.), (2008) (Abstract 9025).
  • O’Day SJ, Ibrahim R, DePril V et al. Efficacy and safety of ipilimumab induction and maintenance dosing in patients with advanced melanoma who progressed on one or more prior therapies. J. Clin. Oncol.26(20 Suppl.), (2008) (Abstract 9021).
  • Weber JS, Berman D, Siegel J et al. Safety and efficacy of ipilimumab with or without prophylactic budesonide in treatment-naive and previously treated patients with advanced melanoma. J. Clin. Oncol.26(20 Suppl.), (2008) (Abstract 9010).
  • Ron I, Berman D, Siegel J et al. Efficacy and safety of patients with advanced melanoma treated with ipilimumab with or without the addition of prophylactic budesonide. Ann. Oncol.19(8 Suppl.), (2008) (Abstract 783P).
  • Ridolfi R, Berman D, Siegel J et al. Efficacy and safety of treatment-naïve and previously treated patients with advanced melanoma receiving ipilimumab. Ann. Oncol.19(8 Suppl.), (2008) (Abstract 778P).
  • Maio M, Hoos A, Ibrahim R et al. Efficacy and safety of ipilimumab in patients with advanced melanoma who had progressed on one or more prior therapies: results from a single-arm, multicenter study. Ann. Oncol.19(8 Suppl.), (2008) (Abstract 776PD).
  • Hersh E M, Weber JS, Powderly JD et al. Disease control and long-term survival in chemotherapy-naive patients with advanced melanoma treated with ipilimumab (MDX- 010) with or without dacarbazine. J. Clin. Oncol.26(20 Suppl.), (2008) (Abstract 9022).
  • Maker AV, Attia P, Rosenberg SA. Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J. Immunol.175(11), 7746–7754 (2005).
  • Attia P, Phan GQ, Maker AV et al. Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J. Clin. Oncol.23(25), 6043–6053 (2005).
  • Korman A, Yellin M, Keler T. Tumor immunotherapy: preclinical and clinical activity of anti-CTLA4 antibodies. Curr. Opin. Investig. Drugs.6(6), 582–591 (2005).
  • Peggs KS, Quezada SA, Korman AJ, Allison JP. Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr. Opin. Immunol.18(2), 206–213 (2006).
  • Leach DR, Krummel MF, Allison J. Enhancement of antitumor immunity by CTLA-4 blockade. Science271(5256), 1734–1736 (1996).
  • Sotomayor EM, Borrello I, Tubb E, Allison JP, Levitsky HI. In vivo blockade of CTLA-4 enhances the priming of responsive T cells but fails to prevent the induction of tumor antigen-specific tolerance. Proc. Natl Acad. Sci. USA96(20), 11476–11481 (1999).
  • Shrikant P, Khoruts A, Mescher MF. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity11(4), 483–493 (1999).
  • Sutmuller RP, van Duivenvoorde LM, van Elsas A et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med.194(6), 823–832 (2001).
  • Davila E, Kennedy R, Celis E. Generation of antitumor immunity by cytotoxic T lymphocyte epitope peptide vaccination, CpG-oligodeoxynucleotide adjuvant, and CTLA-4 blockade. Cancer Res.63(12), 3281–3288 (2003).
  • Phan GQ, Yang JC, Sherry RM et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA100(14), 8372–8377 (2003).
  • Fischkoff SA, Hersh E, Weber J et al. Durable responses and long-term progression-free survival observed in a Phase II study of MDX-010 alone or in combination with dacarbazine (DTIC) in metastatic melanoma. J. Clin. Oncol.23(16 Suppl.), (2005) (Abstract 7525).
  • Reuben JM, Lee BN, Li C et al. Biologic and immunomodulatory events after CTLA-4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer106(11), 2437–2444 (2006).
  • Weber JS, Targan S, Scotland R et al. Phase II trial of extended dose anti-CTLA-4 antibody ipilimumab (formerly MDX-010) with a multi-peptide vaccine for resected syages IIIc and IV melanoma. J. Clin. Oncol.24(18 Suppl.), (2006) (Abstract 2510).
  • Beck KE, Blansfield JA, Tran KQ et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J. Clin. Oncol.24(15), 2283–2289 (2006).
  • Antonia S, Sosman J, Kirkwood JM et al. Natural history of diarrhea associated with the anti-CTLA-4 monoclonal antibody. J. Clin. Oncol.25(18 Suppl.), (2007) (Abstract 3038).
  • Blansfield JA, Beck KE, Tran K et al. Cytotoxic T-lymphocyte-associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer. J. Immunother.28(6), 593–598 (2005).
  • Chin K, Ibrahim R, Berman D et al. Treatment guidelines for the management of immune-related adverse events in patients treated with ipilimumab, an anti-CTLA-4 therapy. Ann. Oncol.19(8 Suppl.), (2008) (Abstract 787P).
  • Weber J. Anti-CTLA-4 antibody ipilimumab: case studies of clinical response and immune-related adverse events. Oncologist12(7), 864–872 (2007).
  • O’Day SJ, Hamid O, Urba WJ. Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4): a novel strategy for the treatment of melanoma and other malignancies. Cancer110(12), 2614–2627 (2007).
  • Downey SG, Klapper JA, Smith FO et al. Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin. Cancer Res.13(22), 6681–6688 (2007).
  • Hamid O, Urba WJ, Yellin M et al. Kinetics of response to ipilimumab (MDX-010) in patients with stage III/IV melanoma. J. Clin. Oncol.25(18 Suppl.), (2007) (Abstract 8525).
  • Fong L, Small EJ. Anti-cytotoxic T-lymphocyte antigen-4 antibody: the first in an emerging class of immunomodulatory antibodies for cancer treatment. J. Clin. Oncol.26(32), 5275–5283 (2008).
  • Hodi FS, Butler M, Oble DA et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc. Natl Acad. Sci. USA105(8), 3005–3010 (2008).
  • Saenger YM, Wolchok JD. The heterogeneity of the kinetics of response to ipilimumab in metastatic melanoma: patient cases. Cancer Immun.17(8), 1 (2008).
  • Harmankaya K, Pehamberger H, Hoos A et al. Ipilimumab-mediated patterns of response in patients with pretreated, advanced melanoma. Ann. Oncol.19(8 Suppl.), (2008) (Abstract 784P).
  • Tuma RS. New response criteria proposed for immunotherapies. J. Natl Cancer Inst.100(18), 1280–1281 (2008).
  • Weber J. Overcoming immunologic tolerance to melanoma: targeting CTLA-4 with ipilimumab (MDX-010). Oncologist13(4 Suppl.), 16–25 (2008).
  • Weber J. Ipilimumab: controversies in its development, utility and autoimmune adverse events. Cancer Immunol. Immunother.58(5), 823–830 (2009).
  • Keilholz U. CTLA-4: negative regulator of the immune response and a target for cancer therapy. J. Immunother.31(5), 431–439 (2008).
  • Lens M, Ferrucci PF, Testori A. Anti-CTLA4 monoclonal antibody ipilimumab in the treatment of metastatic melanoma: recent findings. Recent Pat. Anticancer Drug Discov.3(2), 105–113 (2008).
  • Kirkwood JM, Tarhini AA, Panelli MC et al. Next generation of immunotherapy for melanoma. J. Clin. Oncol.26(20), 3445–3455 (2008).
  • Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L. Immunostimulatory monoclonal antibodies for cancer therapy. Nat. Rev. Cancer7(2), 95–106 (2007).
  • Breunis WB, Tarazona-Santos E, Chen R, Kiley M, Rosenberg SA, Chanock SJ. Influence of cytotoxic T lymphocyte-associated antigen 4 (CTLA4) common polymorphisms on outcome in treatment of melanoma patients with CTLA-4 blockade. J. Immunother.31(6), 586–590 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.