7
Views
8
CrossRef citations to date
0
Altmetric
Review

Cancer stem cells in cutaneous melanoma

, &
Pages 225-235 | Published online: 10 Jan 2014

References

  • Miller AJ, Mihm MC Jr. Melanoma. N. Engl. J. Med.355(1), 51–65 (2006).
  • Garbe C, Blum A. Epidemiology of cutaneous melanoma in Germany and worldwide. Skin Pharmacol. Appl. Skin Physiol.14(5), 280–290 (2001).
  • Eide MJ, Weinstock MA. Association of UV index, latitude, and melanoma incidence in nonwhite populations – US Surveillance, Epidemiology, and End Results (SEER) Program, 1992 to 2001. Arch. Dermatol.141(4), 477–481 (2005).
  • Chang YM, Barrett JH, Bishop DT et al. Sun exposure and melanoma risk at different latitudes: a pooled analysis of 5700 cases and 7216 controls. Int. J. Epidemiol. (2009) (Epub ahead of print).
  • Cancer Facts and Figures 2008. American Cancer Society, Atlanta, GA, USA (2008).
  • Lens MB, Dawes M. Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma. Br. J. Dermatol.150(2), 179–185 (2004).
  • Schaffer JV, Rigel DS, Kopf AW, Bolognia JL. Cutaneous melanoma – past, present, and future. J. Am. Acad. Dermatol.51(1 Suppl.), S65–S69 (2004).
  • Wang SQ, Halpern AC. Management of cutaneous melanoma: a public health and individual patient care perspective. Adv. Dermatol.23, 81–98 (2007).
  • Aloia TA, Gershenwald JE. Management of early-stage cutaneous melanoma. Curr. Probl. Surg.42(7), 460–534 (2005).
  • Buzaid AC. Management of metastatic cutaneous melanoma. Oncology (Williston Park)18(11), 1443–1450; discussion 1457–1449 (2004).
  • Agar N, Young AR. Melanogenesis: a photoprotective response to DNA damage?. Mutat. Res.571(1–2), 121–132 (2005).
  • Meredith P, Riesz J. Radiative relaxation quantum yields for synthetic eumelanin. Photochem. Photobiol.79(2), 211–216 (2004).
  • Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem. Photobiol.84(3), 539–549 (2008).
  • Kavak A, Akcan Y, Korkmaz U. Hair repigmentation in a hepatitis C patient treated with interferon and ribavirin. Dermatology211(2), 171–172 (2005).
  • Na GY, Paek SH, Park BC et al. Isolation and characterization of outer root sheath melanocytes of human hair follicles. Br. J. Dermatol.155(5), 902–909 (2006).
  • Moriyama M, Osawa M, Mak SS et al. Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J. Cell Biol.173(3), 333–339 (2006).
  • Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med.12(9), 406–414 (2006).
  • Lekmine F, Chang CK, Sethakorn N, Das Gupta TK, Salti GI. Role of microphthalmia transcription factor (Mitf) in melanoma differentiation. Biochem. Biophys. Res. Commun.354(3), 830–835 (2007).
  • Murisier F, Guichard S, Beermann F. The tyrosinase enhancer is activated by Sox10 and Mitf in mouse melanocytes. Pigment Cell Res.20(3), 173–184 (2007).
  • Wegner M. Secrets to a healthy Sox life: lessons for melanocytes. Pigment Cell Res.18(2), 74–85 (2005).
  • Lang D, Epstein JA. Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum. Mol. Genet.12(8), 937–945 (2003).
  • Lang D, Lu MM, Huang L et al. Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature433(7028), 884–887 (2005).
  • Yang G, Li Y, Nishimura EK et al. Inhibition of PAX3 by TGF-β modulates melanocyte viability. Mol. Cell32(4), 554–563 (2008).
  • Kubic JD, Young KP, Plummer RS, Ludvik AE, Lang D. Pigmentation PAX-ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease. Pigment Cell Melanoma Res.21(6), 627–645 (2008).
  • Nishikawa S, Osawa M. Generating quiescent stem cells. Pigment Cell Res.20(4), 263–270 (2007).
  • Osawa M, Egawa G, Mak SS et al. Molecular characterization of melanocyte stem cells in their niche. Development132(24), 5589–5599 (2005).
  • Morris RJ, Liu Y, Marles L et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol.22(4), 411–417 (2004).
  • Tumbar T, Guasch G, Greco V et al. Defining the epithelial stem cell niche in skin. Science303(5656), 359–363 (2004).
  • Vance KW, Goding CR. The transcription network regulating melanocyte development and melanoma. Pigment Cell Res.17(4), 318–325 (2004).
  • Garraway LA, Widlund HR, Rubin MA et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature436(7047), 117–122 (2005).
  • Carreira S, Goodall J, Denat L et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev.20(24), 3426–3439 (2006).
  • Larue L, Delmas V. The WNT/B-catenin pathway in melanoma. Front Biosci.11, 733–742 (2006).
  • Lin YC, You L, Xu Z et al. Wnt inhibitory factor-1 gene transfer inhibits melanoma cell growth. Hum. Gene Ther.18(4), 379–386 (2007).
  • Zhuang L, Lee CS, Scolyer RA et al. Mcl-1, Bcl-XL and Stat3 expression are associated with progression of melanoma whereas Bcl-2, AP-2 and MITF levels decrease during progression of melanoma. Mod. Pathol.20(4), 416–426 (2007).
  • Weeraratna AT. A Wnt-er wonderland – the complexity of Wnt signaling in melanoma. Cancer Metastasis Rev.24(2), 237–250 (2005).
  • Wellbrock C, Rana S, Paterson H et al. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. PLoS ONE3(7), e2734 (2008).
  • Malanchi I, Peinado H, Kassen D et al. Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling. Nature452(7187), 650–653 (2008).
  • Watt FM, Collins CA. Role of β-catenin in epidermal stem cell expansion, lineage selection, and cancer. Cold Spring Harb. Symp. Quant. Biol. (2008) (Epub ahead of print).
  • Wang Z, Li Y, Banerjee S, Sarkar FH. Emerging role of Notch in stem cells and cancer. Cancer Lett.279(1), 8–12 (2008).
  • Chien AJ, Moore EC, Lonsdorf AS et al. Activated Wnt/β-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc. Natl Acad. Sci. USA106(4), 1193–1198 (2009).
  • Quintana E, Shackleton M, Sabel MS et al. Efficient tumour formation by single human melanoma cells. Nature456(7222), 593–598 (2008).
  • Dick JE. Looking ahead in cancer stem cell research. Nat. Biotechnol.27(1), 44–46 (2009).
  • Clarke MF, Dick JE, Dirks PB et al. Cancer stem cells – perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res.66(19), 9339–9344 (2006).
  • Eaves CJ. Cancer stem cells: here, there, everywhere?. Nature456(7222), 581–582 (2008).
  • Bongiorno MR, Doukaki S, Malleo F, Arico M. Identification of progenitor cancer stem cell in lentigo maligna melanoma. Dermatol. Ther.21(Suppl. 1), S1–S5 (2008).
  • Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea – a paradigm shift. Cancer Res.66(4), 1883–1890 (2006).
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med.3, 730–737 (1997).
  • Wright MH, Calcagno AM, Salcido CD et al. Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res.10(1), R10 (2008).
  • Ricci-Vitiani L, Lombardi DG, Pilozzi E et al. Identification and expansion of human colon-cancer-initiating cells. Nature445(7123), 111–115 (2007).
  • Haraguchi N, Ohkuma M, Sakashita H et al. CD133+CD44+ population efficiently enriches colon cancer initiating cells. Ann. Surg. Oncol.15(10), 2927–2933 (2008).
  • Vander Griend DJ, Karthaus WL, Dalrymple S et al. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res.68(23), 9703–9711 (2008).
  • Kelly K, Yin JJ. Prostate cancer and metastasis initiating stem cells. Cell Res.18(5), 528–537 (2008).
  • Zhang S, Balch C, Chan MW et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res.68(11), 4311–4320 (2008).
  • Li C, Heidt DG, Dalerba P et al. Identification of pancreatic cancer stem cells. Cancer Res.67(3), 1030–1037 (2007).
  • Kiel MJ, He S, Ashkenazi R et al. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature449(7159), 238–242 (2007).
  • Fang D, Nguyen TK, Leishear K et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res.65(20), 9328–9337 (2005).
  • Frank NY, Margaryan A, Huang Y et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res.65(10), 4320–4333 (2005).
  • Grichnik JM, Burch JA, Schulteis RD et al. Melanoma, a tumor based on a mutant stem cell?. J. Invest. Dermatol.126(1), 142–153 (2006).
  • Klein WM, Wu BP, Zhao S et al. Increased expression of stem cell markers in malignant melanoma. Mod. Pathol.20(1), 102–107 (2007).
  • Monzani E, Facchetti F, Galmozzi E et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur. J. Cancer43(5), 935–946 (2007).
  • Mihic-Probst D, Kuster A, Kilgus S et al. Consistent expression of the stem cell renewal factor BMI-1 in primary and metastatic melanoma. Int. J. Cancer121(8), 1764–1770 (2007).
  • Sigalotti L, Covre A, Zabierowski S et al. Cancer testis antigens in human melanoma stem cells: expression, distribution, and methylation status. J. Cell. Physiol.215(2), 287–291 (2008).
  • Schatton T, Murphy GF, Frank NY et al. Identification of cells initiating human melanomas. Nature451(7176), 345–349 (2008).
  • Keshet GI, Goldstein I, Itzhaki O et al. MDR1 expression identifies human melanoma stem cells. Biochem. Biophys. Res. Commun.368(4), 930–936 (2008).
  • Cook AL, Donatien PD, Smith AG et al. Human melanoblasts in culture: expression of BRN2 and synergistic regulation by fibroblast growth factor-2, stem cell factor, and endothelin-3. J. Invest. Dermatol.121(5), 1150–1159 (2003).
  • Strizzi L, Abbott DE, Salomon DS, Hendrix MJ. Potential for cripto-1 in defining stem cell-like characteristics in human malignant melanoma. Cell Cycle7(13), 1931–1935 (2008).
  • Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin. Cancer Biol.15(5), 378–386 (2005).
  • Zabierowski SE, Herlyn M. Learning the ABCs of melanoma-initiating cells. Cancer Cell13(3), 185–187 (2008).
  • Zhou J, Wang CY, Liu T et al. Persistence of side population cells with high drug efflux capacity in pancreatic cancer. World J. Gastroenterol.14(6), 925–930 (2008).
  • Dean M. ABC transporters, drug resistance, and cancer stem cells. J. Mammary Gland Biol. Neoplasia14(1), 3–9 (2009).
  • Noguchi K, Katayama K, Mitsuhashi J, Sugimoto Y. Functions of the breast cancer resistance protein (BCRP/ABCG2) in chemotherapy. Adv. Drug Deliv. Rev.61(1), 26–33 (2009).
  • Patrawala L, Calhoun T, Schneider-Broussard R et al. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res.65(14), 6207–6219 (2005).
  • Robey RW, Polgar O, Deeken J, To KW, Bates SE. ABCG2: determining its relevance in clinical drug resistance. Cancer Metastasis Rev.26(1), 39–57 (2007).
  • Hirschmann-Jax C, Foster AE, Wulf GG et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc. Natl Acad. Sci. USA101(39), 14228–14233 (2004).
  • Smalley KS, Brafford P, Haass NK et al. Up-regulated expression of zonula occludens protein-1 in human melanoma associates with N-cadherin and contributes to invasion and adhesion. Am. J. Pathol.166(5), 1541–1554 (2005).
  • Feldmann G, Dhara S, Fendrich V et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res.67(5), 2187–2196 (2007).
  • Balint K, Xiao M, Pinnix CC et al. Activation of Notch1 signaling is required for β-catenin-mediated human primary melanoma progression. J. Clin. Invest.115(11), 3166–3176 (2005).
  • Liu ZJ, Xiao M, Balint K et al. Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res.66(8), 4182–4190 (2006).
  • Stecca B, Mas C, Clement V et al. Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc. Natl Acad. Sci. USA104(14), 5895–5900 (2007).
  • Qin JZ, Stennett L, Bacon P et al. p53-independent NOXA induction overcomes apoptotic resistance of malignant melanomas. Mol. Cancer Ther.3(8), 895–902 (2004).
  • Hamai A, Meslin F, Benlalam H et al. ICAM-1 has a critical role in the regulation of metastatic melanoma tumor susceptibility to CTL lysis by interfering with PI3K/AKT pathway. Cancer Res.68(23), 9854–9864 (2008).
  • Rappa G, Fodstad O, Lorico A. The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells26(12), 3008–3017 (2008).
  • Yi JM, Tsai HC, Glockner SC et al. Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res.68(19), 8094–8103 (2008).
  • Jaksch M, Munera J, Bajpai R, Terskikh A, Oshima RG. Cell cycle-dependent variation of a CD133 epitope in human embryonic stem cell, colon cancer, and melanoma cell lines. Cancer Res.68(19), 7882–7886 (2008).
  • Winnepenninckx V, Lazar V, Michiels S et al. Gene expression profiling of primary cutaneous melanoma and clinical outcome. J. Natl Cancer Inst.98(7), 472–482 (2006).
  • Kauffmann A, Rosselli F, Lazar V et al. High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene27(5), 565–573 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.