25
Views
9
CrossRef citations to date
0
Altmetric
Review

Basal cell carcinomas: molecular abnormalities and molecularly targeted therapies

, &
Pages 355-369 | Published online: 10 Jan 2014

References

  • de Vries E, Louwman M, Bastiaens M, de Gruijl F, Coebergh JW. Rapid and continuous increases in incidence rates of basal cell carcinoma in the southeast Netherlands since 1973. J. Invest. Dermatol.123(4), 634–638 (2004).
  • Breuninger H, Sebastian G, Kortmann RD et al. Brief guidelines: basal cell carcinoma of the skin. J. Dtsch. Dermatol. Ges.4(5), 441–443 (2006).
  • Rosso S, Zanetti R, Martinez C et al. The multicentre south European study ‘Helios’ II: different sun exposure patterns in the aetiology of basal cell and squamous cell carcinomas of the skin. Br. J. Cancer73(11), 1447–1454 (1996).
  • Kricker A, Armstrong BK, English DR, Heenan PJ. Does intermittent sun exposure cause basal cell carcinoma? A case–control study in Western Australia. Int. J. Cancer60(4), 489–494 (1995).
  • Armstrong BK, Kricker A. The epidemiology of UV-induced skin cancer. J. Photochem. Photobiol. B63(1–3), 8–18 (2001).
  • MacKie RM. Long-term health risk to the skin of ultraviolet radiation. Prog. Biophys. Mol. Biol.92(1), 92–96 (2006).
  • Pfeifer GP, You YH, Besaratinia A. Mutations induced by ultraviolet light. Mutat. Res.571(1–2), 19–31 (2005).
  • de Gruijl FR, Rebel H. Early events in UV carcinogenesis: DNA damage, target cells and mutant p53 foci. Photochem. Photobiol.84(2), 382–387 (2008).
  • Kim MY, Park HJ, Baek SC, Byun DG, Houh D. Mutations of the p53 and PTCH gene in basal cell carcinomas: UV mutation signature and strand bias. J. Dermatol. Sci.29(1), 1–9 (2002).
  • Franchi A, Massi D, Gallo O, Santucci M, Porfirio B. Radiation-induced cutaneous carcinoma of the head and neck: is there an early role for p53 mutations? Clin. Exp. Dermatol.31(6), 793–798 (2006).
  • Yoshinaga S, Hauptmann M, Sigurdson AJ et al. Nonmelanoma skin cancer in relation to ionizing radiation exposure among US radiologic technologists. Int. J. Cancer115(5), 828–834 (2005).
  • Guo HR, Yu HS, Hu H, Monson RR. Arsenic in drinking water and skin cancers: cell-type specificity (Taiwan, ROC). Cancer Causes Control12(10), 909–916 (2001).
  • Karagas MR, Stukel TA, Morris JS et al. Skin cancer risk in relation to toenail arsenic concentrations in a US population-based case–control study. Am. J. Epidemiol.153(6), 559–565 (2001).
  • Karagas MR, Stukel TA, Tosteson TD. Assessment of cancer risk and environmental levels of arsenic in New Hampshire. Int. J. Hyg. Environ. Health205(1–2), 85–94 (2002).
  • Danaee H, Nelson HH, Liber H, Little JB, Kelsey KT. Low dose exposure to sodium arsenite synergistically interacts with UV radiation to induce mutations and alter DNA repair in human cells. Mutagenesis19(2), 143–148 (2004).
  • Rossman TG. Mechanism of arsenic carcinogenesis: an integrated approach. Mutat. Res.533(1–2), 37–65 (2003).
  • Hartwig A, Groblinghoff UD, Beyersmann D et al. Interaction of arsenic(III) with nucleotide excision repair in UV-irradiated human fibroblasts. Carcinogenesis18(2), 399–405 (1997).
  • Yu HS, Liao WT, Chai CY. Arsenic carcinogenesis in the skin. J. Biomed. Sci.13(5), 657–666 (2006).
  • Ramachandran S, Fryer AA, Lovatt TJ et al. Combined effects of gender, skin type and polymorphic genes on clinical phenotype: use of rate of increase in numbers of basal cell carcinomas as a model system. Cancer Lett.189(2), 175–181 (2003).
  • Christenson LJ, Borrowman TA, Vachon CM et al. Incidence of basal cell and squamous cell carcinomas in a population younger than 40 years. JAMA294(6), 681–690 (2005).
  • Marcil I, Stern RS. Risk of developing a subsequent nonmelanoma skin cancer in patients with a history of nonmelanoma skin cancer: a critical review of the literature and meta-analysis. Arch. Dermatol.136(12), 1524–1530 (2000).
  • Asuquo ME, Agweye P, Ugare G, Ebughe G. Basal cell carcinoma in five albino Africans from the south-eastern equatorial rain forest of Nigeria. Int. J. Dermatol.46(7), 754–756 (2007).
  • Han J, Kraft P, Colditz GA, Wong J, Hunter DJ. Melanocortin 1 receptor variants and skin cancer risk. Int. J. Cancer119(8), 1976–1984 (2006).
  • King R, Oetting W, Summers S, Creel D, Hearing V. Abnormalities of Pigmentation. In: Emery and Rimoin’s Principles and Practice of Medical Genetics. Rimoin D, Connor J, Pyeritz R, Korf B (Eds). Churchill Livingstone Elsevier, NY, USA 3380–3427 (2007).
  • Gronskov K, Ek J, Brondum-Nielsen K. Oculocutaneous albinism. Orphanet J. Rare Dis.2, 43 (2007).
  • Rees JL. The genetics of sun sensitivity in humans. Am. J. Hum. Genet.75(5), 739–751 (2004).
  • Valverde P, Healy E, Jackson I, Rees JL, Thody AJ. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat. Genet.11(3), 328–330 (1995).
  • Liboutet M, Portela M, Delestaing G et al. MC1R and PTCH gene polymorphism in French patients with basal cell carcinomas. J. Invest. Dermatol.126(7), 1510–1517 (2006).
  • Aszterbaum M, Rothman A, Johnson RL et al. Identification of mutations in the human PATCHED gene in sporadic basal cell carcinomas and in patients with the basal cell nevus syndrome. J. Invest. Dermatol.110(6), 885–888 (1998).
  • Xie J, Murone M, Luoh SM et al. Activating smoothened mutations in sporadic basal-cell carcinoma. Nature391(6662), 90–92 (1998).
  • Lo Muzio L. Nevoid basal cell carcinoma syndrome (Gorlin syndrome). Orphanet J. Rare Dis.3, 32 (2008).
  • Kraemer KH, Lee MM, Andrews AD, Lambert WC. The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. the xeroderma pigmentosum paradigm. Arch. Dermatol.130(8), 1018–1021 (1994).
  • Malhotra AK, Gupta S, Khaitan BK, Verma KK. Multiple basal cell carcinomas in xeroderma pigmentosum treated with imiquimod 5% cream. Pediatr. Dermatol.25(4), 488–491 (2008).
  • Moriwaki S, Kraemer KH. Xeroderma pigmentosum: bridging a gap between clinic and laboratory. Photodermatol. Photoimmunol. Photomed.17(2), 47–54 (2001).
  • Daya-Grosjean L, Sarasin A. UV-specific mutations of the human patched gene in basal cell carcinomas from normal individuals and xeroderma pigmentosum patients. Mutat. Res.450(1–2), 193–199 (2000).
  • D’Errico M, Calcagnile A, Canzona F et al. UV mutation signature in tumor suppressor genes involved in skin carcinogenesis in xeroderma pigmentosum patients. Oncogene19(3), 463–467 (2000).
  • Bodak N, Queille S, Avril MF et al. High levels of patched gene mutations in basal-cell carcinomas from patients with xeroderma pigmentosum. Proc. Natl Acad. Sci. USA96(9), 5117–5122 (1999).
  • Michaelsson G, Olsson E, Westermark P. The Rombo syndrome: a familial disorder with vermiculate atrophoderma, milia, hypotrichosis, trichoepitheliomas, basal cell carcinomas and peripheral vasodilation with cyanosis. Acta Derm. Venereol.61(6), 497–503 (1981).
  • Efron PA, Chen MK, Glavin FL, Kays DW, Beierle EA. Pediatric basal cell carcinoma: case reports and literature review. J. Pediatr. Surg.43(12), 2277–2280 (2008).
  • Griffin JR, Cohen PR, Tschen JA et al. Basal cell carcinoma in childhood: case report and literature review. J. Am. Acad. Dermatol.57(5 Suppl.), S97–S102 (2007).
  • Bath-Hextall F, Leonardi-Bee J, Somchand N et al. Interventions for preventing non melanoma skin cancers in high-risk groups. Cochrane Database Syst. Rev. (4), CD005414 (2007).
  • Hepburn DJ, Divakar D, Bailey RR, Macdonald KJ. Cutaneous manifestations of renal transplantation in a New Zealand population. N. Z. Med. J.107(991), 497–499 (1994).
  • Bordea C, Wojnarowska F, Millard PR et al. Skin cancers in renal-transplant recipients occur more frequently than previously recognized in a temperate climate. Transplantation77(4), 574–579 (2004).
  • Ramsay HM, Reece SM, Fryer AA, Smith AG, Harden PN. Seven-year prospective study of nonmelanoma skin cancer incidence in U.K. renal transplant recipients. Transplantation84(3), 437–439 (2007).
  • Ulrich C, Kanitakis J, Stockfleth E, Euvrard S. Skin cancer in organ transplant recipients: where do we stand today? Am. J. Transplant.8(11), 2192–2198 (2008).
  • Hartevelt MM, Bavinck JN, Kootte AM, Vermeer BJ, Vandenbroucke JP. Incidence of skin cancer after renal transplantation in The Netherlands. Transplantation49(3), 506–509 (1990).
  • Burgi A, Brodine S, Wegner S et al. Incidence and risk factors for the occurrence of non-AIDS-defining cancers among human immunodeficiency virus-infected individuals. Cancer104(7), 1505–1511 (2005).
  • Otley CC. Non-Hodgkin lymphoma and skin cancer: a dangerous combination. Australas. J. Dermatol.47(4), 231–236 (2006).
  • Hjalgrim H, Frisch M, Storm HH et al. Non-melanoma skin cancer may be a marker of poor prognosis in patients with non-Hodgkin’s lymphoma. Int. J. Cancer85(5), 639–642 (2000).
  • Jensen AO, Olesen AB, Dethlefsen C, Sorensen HT, Karagas MR. Chronic diseases requiring hospitalization and risk of non-melanoma skin cancers – a population based study from Denmark. J. Invest. Dermatol.128(4), 926–931 (2008).
  • Cho S, Hahm JH, Hong YS. Analysis of p53 and BAX mutations, loss of heterozygosity, p53 and BCL2 expression and apoptosis in basal cell carcinoma in Korean patients. Br. J. Dermatol.144(4), 841–848 (2001).
  • Xin H, Matt D, Qin JZ, Burg G, Boni R. The sebaceous nevus: a nevus with deletions of the PTCH gene. Cancer Res.59(8), 1834–1836 (1999).
  • Raasch BA, Buettner PG, Garbe C. Basal cell carcinoma: histological classification and body-site distribution. Br. J. Dermatol.155(2), 401–407 (2006).
  • WHO/EORTC Classification of cutaneous lymphomas. In: WHO Classification of Tumors, Pathology & Genetics Skin Tumors. LeBoit GBE, Weedon D, Sarasin A (Eds). IARC Press, Lyon, France (2006).
  • Hauschild A, Breuninger H, Kaufmann R et al. Short German guidelines: basal cell carcinoma. J. Dtsch. Dermatol. Ges.6(Suppl. 1), S2–S4 (2008).
  • Mehrany K, Weenig RH, Pittelkow MR, Roenigk RK, Otley CC. High recurrence rates of basal cell carcinoma after mohs surgery in patients with chronic lymphocytic leukemia. Arch. Dermatol.140(8), 985–988 (2004).
  • Zagrodnik B, Kempf W, Seifert B et al. Superficial radiotherapy for patients with basal cell carcinoma: recurrence rates, histologic subtypes, and expression of p53 and Bcl-2. Cancer98(12), 2708–2714 (2003).
  • Szeimies RM, Ibbotson S, Murrell DF et al. A clinical study comparing methyl aminolevulinate photodynamic therapy and surgery in small superficial basal cell carcinoma (8–20 mm), with a 12-month follow-up. J. Eur. Acad. Dermatol. Venereol.22(11), 1302–1311 (2008).
  • Basset-Seguin N, Ibbotson SH, Emtestam L et al. Topical methyl aminolaevulinate photodynamic therapy versus cryotherapy for superficial basal cell carcinoma: a 5 year randomized trial. Eur. J. Dermatol.18(5), 547–553 (2008).
  • Wang Q, Huang S, Yang L et al. Down-regulation of Sonic hedgehog signaling pathway activity is involved in 5-fluorouracil-induced apoptosis and motility inhibition in Hep3B cells. Acta Biochim. Biophys. Sin. (Shanghai)40(9), 819–829 (2008).
  • So PL, Lee K, Hebert J et al. Topical tazarotene chemoprevention reduces basal cell carcinoma number and size in Ptch1 mice exposed to ultraviolet or ionizing radiation. Cancer Res.64(13), 4385–4389 (2004).
  • So PL, Fujimoto MA, Epstein EH Jr. Pharmacologic retinoid signaling and physiologic retinoic acid receptor signaling inhibit basal cell carcinoma tumorigenesis. Mol. Cancer Ther.7(5), 1275–1284 (2008).
  • Urosevic M, Dummer R, Conrad C et al. Disease-independent skin recruitment and activation of plasmacytoid predendritic cells following imiquimod treatment. J. Natl Cancer Inst.97(15), 1143–1153 (2005).
  • Palamara F, Meindl S, Holcmann M et al. Identification and characterization of pDC-like cells in normal mouse skin and melanomas treated with imiquimod. J. Immunol.173(5), 3051–3061 (2004).
  • Urosevic M, Dummer R. Immunotherapy for nonmelanoma skin cancer: does it have a future? Cancer94(2), 477–485 (2002).
  • Urosevic M, Maier T, Benninghoff B et al. Mechanisms underlying imiquimod-induced regression of basal cell carcinoma in vivo. Arch. Dermatol.139(10), 1325–1332 (2003).
  • Schon M, Schon MP. The antitumoral mode of action of imiquimod and other imidazoquinolines. Curr. Med. Chem.14(6), 681–687 (2007).
  • Schon MP, Schon M, Klotz KN. The small antitumoral immune response modifier imiquimod interacts with adenosine receptor signaling in a TLR7- and TLR8-independent fashion. J. Invest. Dermatol.126(6), 1338–1347 (2006).
  • Lefort K, Dotto GP. Notch signaling in the integrated control of keratinocyte growth/differentiation and tumor suppression. Semin. Cancer Biol.14(5), 374–386 (2004).
  • Thelu J, Rossio P, Favier B. Notch signaling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol.2, 7 (2002).
  • Wuest M, Dummer R, Urosevic M. Induction of the members of Notch pathway in superficial basal cell carcinomas treated with imiquimod. Arch. Dermatol. Res.299(10), 493–498 (2007).
  • Ramachandran S, Fryer AA, Lovatt T et al. Susceptibility and modifier genes in cutaneous basal cell carcinomas and their associations with clinical phenotype. J. Photochem. Photobiol. B63(1–3), 1–7 (2001).
  • Ramachandran S, Fryer AA, Smith A et al. Cutaneous basal cell carcinomas: distinct host factors are associated with the development of tumors on the trunk and on the head and neck. Cancer92(2), 354–358 (2001).
  • Wong CS, Strange RC, Lear JT. Basal cell carcinoma. BMJ327(7418), 794–798 (2003).
  • Strange RC, Spiteri MA, Ramachandran S, Fryer AA. Glutathione-S-transferase family of enzymes. Mutat. Res.482(1–2), 21–26 (2001).
  • Kerb R, Brockmoller J, Reum T, Roots I. Deficiency of glutathione S-transferases T1 and M1 as heritable factors of increased cutaneous UV sensitivity. J. Invest. Dermatol.108(2), 229–232 (1997).
  • Lear JT, Heagerty AH, Smith A et al. Multiple cutaneous basal cell carcinomas: glutathione S-transferase (GSTM1, GSTT1) and cytochrome P450 (CYP2D6, CYP1A1) polymorphisms influence tumor numbers and accrual. Carcinogenesis17(9), 1891–1896 (1996).
  • Lear JT, Smith AG, Heagerty AH et al. Truncal site and detoxifying enzyme polymorphisms significantly reduce time to presentation of further primary cutaneous basal cell carcinoma. Carcinogenesis18(8), 1499–1503 (1997).
  • Yengi L, Inskip A, Gilford J et al. Polymorphism at the glutathione S-transferase locus GSTM3: interactions with cytochrome P450 and glutathione S-transferase genotypes as risk factors for multiple cutaneous basal cell carcinoma. Cancer Res.56(9), 1974–1977 (1996).
  • Ramachandran S, Fryer AA, Smith AG et al. Basal cell carcinomas: association of allelic variants with a high-risk subgroup of patients with the multiple presentation phenotype. Pharmacogenetics11(3), 247–254 (2001).
  • Ramachandran S, Hoban PR, Ichii-Jones F et al. Glutathione S-transferase GSTP1 and cyclin D1 genotypes: association with numbers of basal cell carcinomas in a patient subgroup at high-risk of multiple tumors. Pharmacogenetics10(6), 545–556 (2000).
  • Ramachandran S, Lear JT, Ramsay H et al. Presentation with multiple cutaneous basal cell carcinomas: association of glutathione S-transferase and cytochrome P450 genotypes with clinical phenotype. Cancer Epidemiol. Biomarkers Prev.8(1), 61–67 (1999).
  • Cleaver JE. Defective repair replication of DNA in xeroderma pigmentosum. Nature218(5142), 652–656 (1968).
  • Cleaver JE. Ultraviolet photobiology: its early roots and insights into DNA repair. DNA Repair (Amst.)1(11), 977–979 (2002).
  • Tilli CM, Van Steensel MA, Krekels GA, Neumann HA, Ramaekers FC. Molecular aetiology and pathogenesis of basal cell carcinoma. Br. J. Dermatol.152(6), 1108–1124 (2005).
  • Dybdahl M, Vogel U, Frentz G, Wallin H, Nexo BA. Polymorphisms in the DNA repair gene XPD: correlations with risk and age at onset of basal cell carcinoma. Cancer Epidemiol. Biomarkers Prev.8(1), 77–81 (1999).
  • Han J, Colditz GA, Hunter DJ. Lack of associations of selected variants in genes involved in cell cycle and apoptosis with skin cancer risk. Cancer Epidemiol. Biomarkers Prev.15(3), 592–593 (2006).
  • Han J, Hankinson SE, Colditz GA, Hunter DJ. Genetic variation in XRCC1, sun exposure, and risk of skin cancer. Br. J. Cancer91(8), 1604–1609 (2004).
  • Lovatt T, Alldersea J, Lear JT et al. Polymorphism in the nuclear excision repair gene ERCC2/XPD: association between an exon 6 exon 10 haplotype and susceptibility to cutaneous basal cell carcinoma. Hum. Mutat.25(4), 353–359 (2005).
  • Miller KL, Karagas MR, Kraft P et al. XPA, haplotypes, and risk of basal and squamous cell carcinoma. Carcinogenesis27(8), 1670–1675 (2006).
  • Vogel U, Hedayati M, Dybdahl M, Grossman L, Nexo BA. Polymorphisms of the DNA repair gene XPD: correlations with risk of basal cell carcinoma revisited. Carcinogenesis22(6), 899–904 (2001).
  • Vogel U, Olsen A, Wallin H et al. Effect of polymorphisms in XPD, RAI, ASE-1 and ERCC1 on the risk of basal cell carcinoma among Caucasians after age 50. Cancer Detect. Prev.29(3), 209–214 (2005).
  • Meeran SM, Mantena SK, Meleth S, Elmets CA, Katiyar SK. Interleukin-12-deficient mice are at greater risk of UV radiation-induced skin tumors and malignant transformation of papillomas to carcinomas. Mol. Cancer Ther.5(4), 825–832 (2006).
  • Couve-Privat S, Bouadjar B, Avril MF, Sarasin A, Daya-Grosjean L. Significantly high levels of ultraviolet-specific mutations in the smoothened gene in basal cell carcinomas from DNA repair-deficient xeroderma pigmentosum patients. Cancer Res.62(24), 7186–7189 (2002).
  • Couve-Privat S, Le Bret M, Traiffort E et al. Functional analysis of novel sonic hedgehog gene mutations identified in basal cell carcinomas from xeroderma pigmentosum patients. Cancer Res.64(10), 3559–3565 (2004).
  • Katayama H, Brinkley WR, Sen S. The Aurora kinases: role in cell transformation and tumorigenesis. Cancer Metastasis Rev.22(4), 451–464 (2003).
  • Frentz G, Moller U. Clonal heterogeneity in curetted human epidermal cancers and precancers analysed by flow cytometry and compared with histology. Br. J. Dermatol.109(2), 173–181 (1983).
  • Robinson JK, Rademaker AW, Goolsby C, Traczyk TN, Zoladz C. DNA ploidy in nonmelanoma skin cancer. Cancer77(2), 284–291 (1996).
  • Staibano S, Lo Muzio L, Pannone G et al. DNA ploidy and cyclin D1 expression in basal cell carcinoma of the head and neck. Am. J. Clin. Pathol.115(6), 805–813 (2001).
  • Casalone R, Mazzola D, Righi R et al. Cytogenetic and interphase FISH analyses of 73 basal cell and three squamous cell carcinomas: different findings in direct preparations and short-term cell cultures. Cancer Genet. Cytogenet.118(2), 136–143 (2000).
  • Jin Y, Martins C, Jin C et al. Nonrandom karyotypic features in squamous cell carcinomas of the skin. Genes Chromosomes Cancer26(4), 295–303 (1999).
  • Jin Y, Mertens F, Persson B et al. Nonrandom numerical chromosome abnormalities in basal cell carcinomas. Cancer Genet. Cytogenet.103(1), 35–42 (1998).
  • Jin Y, Merterns F, Persson B et al. The reciprocal translocation t(9;16)(q22;p13) is a primary chromosome abnormality in basal cell carcinomas. Cancer Res.57(3), 404–406 (1997).
  • Kawasaki-Oyama RS, Andre FS, Caldeira LF et al. Cytogenetic findings in two basal cell carcinomas. Cancer Genet. Cytogenet.73(2), 152–156 (1994).
  • Mertens F, Heim S, Mandahl N et al. Cytogenetic analysis of 33 basal cell carcinomas. Cancer Res.51(3), 954–957 (1991).
  • Ashton KJ, Weinstein SR, Maguire DJ, Griffiths LR. Molecular cytogenetic analysis of basal cell carcinoma DNA using comparative genomic hybridization. J. Invest. Dermatol.117(3), 683–686 (2001).
  • Saridaki Z, Koumantaki E, Liloglou T et al. High frequency of loss of heterozygosity on chromosome region 9p21-p22 but lack of p16INK4a/p19ARF mutations in greek patients with basal cell carcinoma of the skin. J. Invest. Dermatol.115(4), 719–725 (2000).
  • Carless MA, Griffiths LR. Cytogenetics of melanoma and nonmelanoma skin cancer. Adv. Exp. Med. Biol.624, 227–240 (2008).
  • Quinn AG, Sikkink S, Rees JL. Basal cell carcinomas and squamous cell carcinomas of human skin show distinct patterns of chromosome loss. Cancer Res.54(17), 4756–4759 (1994).
  • Shanley SM, Dawkins H, Wainwright BJ et al. Fine deletion mapping on the long arm of chromosome 9 in sporadic and familial basal cell carcinomas. Hum. Mol. Genet.4(1), 129–133 (1995).
  • Shen T, Park WS, Boni R et al. Detection of loss of heterozygosity on chromosome 9q22.3 in microdissected sporadic basal cell carcinoma. Hum. Pathol.30(3), 284–287 (1999).
  • Gorlin RJ. Nevoid basal-cell carcinoma syndrome. Medicine (Baltimore)66(2), 98–113 (1987).
  • Evans DG, Farndon PA, Burnell LD, Gattamaneni HR, Birch JM. The incidence of Gorlin syndrome in 173 consecutive cases of medulloblastoma. Br. J. Cancer64(5), 959–961 (1991).
  • Johnson AD, Hebert AA, Esterly NB. Nevoid basal cell carcinoma syndrome: bilateral ovarian fibromas in a 3 1/2-year-old girl. J. Am. Acad. Dermatol.14(2 Pt 2), 371–374 (1986).
  • Kimonis VE, Goldstein AM, Pastakia B et al. Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am. J. Med. Genet.69(3), 299–308 (1997).
  • Gailani MR, Bale SJ, Leffell DJ et al. Developmental defects in Gorlin syndrome related to a putative tumor suppressor gene on chromosome 9. Cell69(1), 111–117 (1992).
  • Hahn H, Wicking C, Zaphiropoulous PG et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell85(6), 841–851 (1996).
  • Johnson RL, Rothman AL, Xie J et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science272(5268), 1668–1671 (1996).
  • Klein RD, Dykas DJ, Bale AE. Clinical testing for the nevoid basal cell carcinoma syndrome in a DNA diagnostic laboratory. Genet. Med.7(9), 611–619 (2005).
  • Adolphe C, Hetherington R, Ellis T, Wainwright B. Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res.66(4), 2081–2088 (2006).
  • Hutchin ME, Kariapper MS, Grachtchouk M et al. Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival: conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev.19(2), 214–223 (2005).
  • Gailani MR, Stahle-Backdahl M, Leffell DJ et al. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat. Genet.14(1), 78–81 (1996).
  • Reifenberger J, Wolter M, Weber RG et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res.58(9), 1798–1803 (1998).
  • Epstein EH. Basal cell carcinomas: attack of the hedgehog. Nat. Rev. Cancer8(10), 743–754 (2008).
  • Wetmore C, Eberhart DE, Curran T. Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res.61(2), 513–516 (2001).
  • Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature432(7015), 332–337 (2004).
  • Valin A, Barnay-Verdier S, Robert T et al. PTCH1 dermal fibroblasts isolated from healthy skin of Gorlin syndrome patients exhibit features of carcinoma associated fibroblasts. PLoS ONE4(3), e4818 (2009).
  • Kinzler KW, Bigner SH, Bigner DD et al. Identification of an amplified, highly expressed gene in a human glioma. Science236(4797), 70–73 (1987).
  • Pasca di Magliano M, Hebrok M. Hedgehog signaling in cancer formation and maintenance. Nat. Rev. Cancer3(12), 903–911 (2003).
  • Bonifas JM, Pennypacker S, Chuang PT et al. Activation of expression of hedgehog target genes in basal cell carcinomas. J. Invest. Dermatol.116(5), 739–742 (2001).
  • Tojo M, Kiyosawa H, Iwatsuki K, Kaneko F. Expression of a sonic hedgehog signal transducer, hedgehog-interacting protein, by human basal cell carcinoma. Br. J. Dermatol.146(1), 69–73 (2002).
  • McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinical significance of hedgehog signaling. Curr. Top. Dev. Biol.53, 1–114 (2003).
  • Karhadkar SS, Bova GS, Abdallah N et al. Hedgehog signaling in prostate regeneration, neoplasia and metastasis. Nature431(7009), 707–712 (2004).
  • Xie J. Molecular biology of basal and squamous cell carcinomas. Adv. Exp. Med. Biol.624, 241–251 (2008).
  • Lee Y, Miller HL, Jensen P et al. A molecular fingerprint for medulloblastoma. Cancer Res.63(17), 5428–5437 (2003).
  • Thompson MC, Fuller C, Hogg TL et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J. Clin. Oncol.24(12), 1924–1931 (2006).
  • Romer JT, Kimura H, Magdaleno S et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1T/1p53 (-/-) mice. Cancer Cell6(3), 229–240 (2004).
  • Sanchez P, Ruiz i Altaba A. In vivo inhibition of endogenous brain tumors through systemic interference of Hedgehog signaling in mice. Mech. Dev.122(2), 223–230 (2005).
  • Palma V, Lim DA, Dahmane N et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development132(2), 335–344 (2005).
  • Sanchez P, Hernandez AM, Stecca B et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc. Natl Acad. Sci. USA101(34), 12561–12566 (2004).
  • Thayer SP, di Magliano MP, Heiser PW et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature425(6960), 851–856 (2003).
  • Watkins DN, Berman DM, Burkholder SG et al. Hedgehog signaling within airway epithelial progenitors and in small-cell lung cancer. Nature422(6929), 313–317 (2003).
  • Athar M, Li C, Tang X et al. Inhibition of smoothened signaling prevents ultraviolet B-induced basal cell carcinomas through regulation of Fas expression and apoptosis. Cancer Res.64(20), 7545–7552 (2004).
  • Kump E, Ji J, Wernli M, Hausermann P, Erb P. Gli2 upregulates cFlip and renders basal cell carcinoma cells resistant to death ligand-mediated apoptosis. Oncogene27(27), 3856–3864 (2008).
  • Leung C, Lingbeek M, Shakhova O et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature428(6980), 337–341 (2004).
  • Regl G, Kasper M, Schnidar H et al. Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Res.64(21), 7724–7731 (2004).
  • Xie J, Aszterbaum M, Zhang X et al. A role of PDGFRa in basal cell carcinoma proliferation. Proc. Natl Acad. Sci. USA98(16), 9255–9259 (2001).
  • Hahn H, Wojnowski L, Specht K et al. Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma. J. Biol. Chem.275(37), 28341–28344 (2000).
  • Pan Y, Bai CB, Joyner AL, Wang B. Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol. Cell Biol.26(9), 3365–3377 (2006).
  • Wang B, Fallon JF, Beachy PA. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell100(4), 423–434 (2000).
  • Riobo NA, Lu K, Ai X, Haines GM, Emerson CP Jr. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc. Natl Acad. Sci. USA103(12), 4505–4510 (2006).
  • Teh MT, Wong ST, Neill GW et al. FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res.62(16), 4773–4780 (2002).
  • Dai B, Kang SH, Gong W et al. Aberrant FoxM1B expression increases matrix metalloproteinase-2 transcription and enhances the invasion of glioma cells. Oncogene26(42), 6212–6219 (2007).
  • Kalin TV, Wang IC, Ackerson TJ et al. Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res.66(3), 1712–1720 (2006).
  • Kim IM, Ramakrishna S, Gusarova GA et al. The forkhead box m1 transcription factor is essential for embryonic development of pulmonary vasculature. J. Biol. Chem.280(23), 22278–22286 (2005).
  • Liu M, Dai B, Kang SH et al. FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res.66(7), 3593–3602 (2006).
  • Yoshida Y, Wang IC, Yoder HM, Davidson NO, Costa RH. The forkhead box M1 transcription factor contributes to the development and growth of mouse colorectal cancer. Gastroenterology132(4), 1420–1431 (2007).
  • Gemenetzidis E, Bose A, Riaz AM et al. FOXM1 upregulation is an early event in human squamous cell carcinoma and it is enhanced by nicotine during malignant transformation. PLoS ONE4(3), e4849 (2009).
  • Tan Y, Raychaudhuri P, Costa RH. Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes. Mol. Cell Biol.27(3), 1007–1016 (2007).
  • Schuller U, Zhao Q, Godinho SA et al. Forkhead transcription factor FoxM1 regulates mitotic entry and prevents spindle defects in cerebellar granule neuron precursors. Mol. Cell. Biol.27(23), 8259–8270 (2007).
  • Wonsey DR, Follettie MT. Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res.65(12), 5181–5189 (2005).
  • Brancaccio A, Minichiello A, Grachtchouk M et al. Requirement of the forkhead gene Foxe1, a target of sonic hedgehog signaling, in hair follicle morphogenesis. Hum. Mol. Genet.13(21), 2595–2606 (2004).
  • Radhakrishnan SK, Bhat UG, Hughes DE et al. Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box M1. Cancer Res.66(19), 9731–9735 (2006).
  • Yang SH, Andl T, Grachtchouk V et al. Pathological responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/β3-catenin signaling. Nat. Genet.40(9), 1130–1135 (2008).
  • Asplund A, Gry Bjorklund M, Sundquist C et al. Expression profiling of microdissected cell populations selected from basal cells in normal epidermis and basal cell carcinoma. Br. J. Dermatol.158(3), 527–538 (2008).
  • Yu M, Zloty D, Cowan B et al. Superficial, nodular, and morpheiform basal-cell carcinomas exhibit distinct gene expression profiles. J. Invest. Dermatol.128(7), 1797–1805 (2008).
  • Lauth M, Bergstrom A, Toftgard R. Phorbol esters inhibit the Hedgehog signaling pathway downstream of Suppressor of Fused, but upstream of Gli. Oncogene26(35), 5163–5168 (2007).
  • Riobo NA, Haines GM, Emerson CP Jr. Protein kinase C-delta and mitogen-activated protein/extracellular signal-regulated kinase-1 control GLI activation in hedgehog signaling. Cancer Res.66(2), 839–845 (2006).
  • Neill GW, Ghali LR, Green JL et al. Loss of protein kinase Ca expression may enhance the tumorigenic potential of Gli1 in basal cell carcinoma. Cancer Res.63(15), 4692–4697 (2003).
  • Neill GW, Harrison WJ, Ikram MS et al. GLI1 repression of ERK activity correlates with colony formation and impaired migration in human epidermal keratinocytes. Carcinogenesis29(4), 738–746 (2008).
  • Nicolas M, Wolfer A, Raj K et al. Notch1 functions as a tumor suppressor in mouse skin. Nat. Genet.33(3), 416–421 (2003).
  • Lowell S, Jones P, Le Roux I, Dunne J, Watt FM. Stimulation of human epidermal differentiation by delta-notch signaling at the boundaries of stem-cell clusters. Curr. Biol.10(9), 491–500 (2000).
  • Blanpain C, Horsley V, Fuchs E. Epithelial stem cells: turning over new leaves. Cell128(3), 445–458 (2007).
  • Bettencourt MS, Prieto VG, Shea CR. Trichoepithelioma: a 19-year clinicopathologic re-evaluation. J. Cutan. Pathol.26(8), 398–404 (1999).
  • Kovalenko A, Cahble-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G. The tumor suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature424(6950), 801–805 (2003).
  • Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature424(6950), 738–739.
  • Johnson GL, Nakamura K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim. Biophys. Acta1773(8), 1341–1348 (2007).
  • Hu WG, Liu T, Xiong JX, Wang CY. Blockade of sonic hedgehog signal pathway enhances antiproliferative effect of EGFR inhibitor in pancreatic cancer cells. Acta Pharmacol. Sin.28(8), 1224–1230 (2007).
  • Kasper M, Schnidar H, Neill GW et al. Selective modulation of Hedgehog/GLI target gene expression by epidermal growth factor signaling in human keratinocytes. Mol. Cell Biol.26(16), 6283–6298 (2006).
  • Schnidar H, Eberl M, Klingler S et al. Epidermal growth factor receptor signaling synergizes with Hedgehog/GLI in oncogenic transformation via activation of the MEK/ERK/JUN pathway. Cancer Res.69(4), 1284–1292 (2009).
  • Laner-Plamberger S, Kaser A, Paulischta M et al. Cooperation between GLI and JUN enhances transcription of JUN and selected GLI target genes. Oncogene28(13), 1639–1651 (2009).
  • Gambichler T, Skrygan M, Kaczmarczyk JM et al. Increased expression of TGF-β/Smad proteins in basal cell carcinoma. Eur. J. Med. Res.12(10), 509–514 (2007).
  • Dennler S, Andre J, Alexaki I et al. Induction of sonic hedgehog mediators by transforming growth factor-β: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res.67(14), 6981–6986 (2007).
  • Javelaud D, Mauviel A. Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-β: implications for carcinogenesis. Oncogene24(37), 5742–5750 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.