224
Views
172
CrossRef citations to date
0
Altmetric
Review

Staphylococcus colonization of the skin and antimicrobial peptides

Pages 183-195 | Published online: 10 Jan 2014

References

  • Kloos W, Schleifer KH. Staphylococcus. In: Bergey’s Manual of Systematic Bacteriology. Holt JG (Ed.). Williams & Wilkins, MD, USA (1986).
  • Kloos WE, Schleifer KH. Staphylococcus auricularis sp. nov.: an inhabitant of the human external ear. Int. J. Syst. Bacteriol.22, 9–14 (1983).
  • Williams RE. Healthy carriage of Staphylococcus aureus: its prevalence and importance. Bacteriol. Rev.27, 56–71 (1963).
  • Armstrong-Esther CA. Carriage patterns of Staphylococcus aureus in a healthy non-hospital population of adults and children. Ann. Hum. Biol.3, 221–227 (1976).
  • Ridley M. Perineal carriage of Staph. aureus. Br. Med. J.1, 270–273 (1959).
  • Wertheim HF, Verveer J, Boelens HA, van Belkum A, Verbrugh HA, Vos MC. Effect of mupirocin treatment on nasal, pharyngeal, and perineal carriage of Staphylococcus aureus in healthy adults. Antimicrob. Agents Chemother.49, 1465–1467 (2005).
  • Eriksen NH, Espersen F, Rosdahl VT, Jensen K. Carriage of Staphylococcus aureus among 104 healthy persons during a 19-month period. Epidemiol. Infect.115, 51–60 (1995).
  • Kluytmans JA, Wertheim HF. Nasal carriage of Staphylococcus aureus and prevention of nosocomial infections. Infection33, 3–8 (2005).
  • Wertheim HF, Melles DC, Vos MC et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis.5, 751–762 (2005).
  • Kloos WE, Musselwhite MS. Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl. Microbiol.30, 381–385 (1975).
  • Kloos WE, Schleifer KH. Isolation and characterization of staphylococci from human skin. II: description of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis and Staphylococcus simulans. Int. J. Syst. Bacteriol.25, 62–79 (1975).
  • Devriese LA, Schleifer KH, Adegoke GO. Identification of coagulase-negative staphylococci from farm animals. J. Appl. Bacteriol.58, 45–55 (1985).
  • Nagase N, Sasaki A, Yamashita K et al. Isolation and species distribution of staphylococci from animal and human skin. J. Vet. Med. Sci.64, 245–250 (2002).
  • Talan DA, Staatz D, Staatz A, Goldstein EJ, Singer K, Overturf GD. Staphylococcus intermedius in canine gingiva and canine-inflicted human wound infections: laboratory characterization of a newly recognized zoonotic pathogen. J. Clin. Microbiol.27, 78–81 (1989).
  • Otto M. Virulence factors of the coagulase-negative staphylococci. Front. Biosci.9, 841–863 (2004).
  • Lowy FD. Staphylococcus aureus infections. N. Engl. J. Med.339, 520–532 (1998).
  • Etienne J, Pangon B, Leport C et al.Staphylococcus lugdunensis endocarditis. Lancet1, 390 (1989).
  • Zinkernagel AS, Zinkernagel MS, Elzi MV et al. Significance of Staphylococcus lugdunensis bacteremia: report of 28 cases and review of the literature. Infection36, 314–321 (2008).
  • National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am. J. Infect. Control32, 470–485 (2004).
  • Vuong C, Otto M. Staphylococcus epidermidis infections. Microbes Infect.4, 481–489 (2002).
  • Jordan PA, Iravani A, Richard GA, Baer H. Urinary tract infection caused by Staphylococcus saprophyticus. J. Infect. Dis.142, 510–515 (1980).
  • Diekema DJ, Pfaller MA, Schmitz FJ et al. Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin. Infect. Dis.32(Suppl. 2), S114–S132 (2001).
  • Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J. Clin. Invest.111, 1265–1273 (2003).
  • Oliveira DC, Tomasz A, de Lencastre H. Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resistant Staphylococcus aureus. Lancet Infect. Dis.2, 180–189 (2002).
  • Chambers HF. The changing epidemiology of Staphylococcus aureus? Emerg. Infect. Dis.7, 178–182 (2001).
  • Klevens RM, Morrison MA, Nadle J et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA298, 1763–1771 (2007).
  • Raad I, Alrahwan A, Rolston K. Staphylococcus epidermidis: emerging resistance and need for alternative agents. Clin. Infect. Dis.26, 1182–1187 (1998).
  • Hanssen AM, Kjeldsen G, Sollid JU. Local variants of Staphylococcal cassette chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative Staphylococci: evidence of horizontal gene transfer? Antimicrob. Agents Chemother.48, 285–296 (2004).
  • Dinges MM, Orwin PM, Schlievert PM. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev.13, 16–34 (2000).
  • DeLeo FR, Diep BA, Otto M. Host defense and pathogenesis in Staphylococcus aureus infections. Infect. Dis. Clin. North Am.23, 17–34 (2009).
  • Otto M. Staphylococcus epidermidis – the ‘accidental’ pathogen. Nat. Rev. Microbiol.7, 555–567 (2009).
  • von Eiff C, Becker K, Machka K, Stammer H, Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N. Engl. J. Med.344, 11–16 (2001).
  • Nouwen JL, Fieren MW, Snijders S, Verbrugh HA, van Belkum A. Persistent (not intermittent) nasal carriage of Staphylococcus aureus is the determinant of CPD-related infections. Kidney Int.67, 1084–1092 (2005).
  • White A. Increased infection rates in heavy nasal carriers of coagulase-positive staphylococci. Antimicrob. Agents Chemother. (Bethesda)161, 667–670 (1963).
  • Foster TJ, Hook M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol.6, 484–488 (1998).
  • Patti JM, Allen BL, McGavin MJ, Hook M. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu. Rev. Microbiol.48, 585–617 (1994).
  • Mazmanian SK, Liu G, Ton-That H, Schneewind O. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science285, 760–763 (1999).
  • Ton-That H, Mazmanian SK, Faull KF, Schneewind O. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH(2)-Gly(3) substrates. J. Biol. Chem.275, 9876–9881 (2000).
  • Otto M. Staphylococcal biofilms. Curr. Top. Microbiol. Immunol.322, 207–228 (2008).
  • Glaser L. Bacterial cell surface polysaccharides. Annu. Rev. Biochem.42, 91–112 (1973).
  • Mack D, Fischer W, Krokotsch A et al. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucosaminoglycan: purification and structural analysis. J. Bacteriol.178, 175–183 (1996).
  • Vuong C, Kocianova S, Voyich JM et al. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J. Biol. Chem.279, 54881–54886 (2004).
  • Hussain M, Herrmann M, von Eiff C, Perdreau-Remington F, Peters G. A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect. Immun.65, 519–524 (1997).
  • Conrady DG, Brescia CC, Horii K, Weiss AA, Hassett DJ, Herr AB. A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms. Proc. Natl Acad. Sci. USA105, 19456–19461 (2008).
  • Rohde H, Burdelski C, Bartscht K et al. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol. Microbiol.55, 1883–1895 (2005).
  • Banner MA, Cunniffe JG, Macintosh RL et al. Localized tufts of fibrils on Staphylococcus epidermidis NCTC 11047 are comprised of the accumulation-associated protein. J. Bacteriol.189, 2793–2804 (2007).
  • Merino N, Toledo-Arana A, Vergara-Irigaray M et al. Protein A-mediated multicellular behavior in Staphylococcus aureus. J. Bacteriol.191, 832–843 (2009).
  • Vergara-Irigaray M, Valle J, Merino N et al. Relevant role of FnBPs in Staphylococcus aureus biofilm associated foreign-body infections. Infect. Immun.77, 3978–3991 (2009).
  • O’Neill E, Pozzi C, Houston P et al. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J. Bacteriol.190, 3835–3850 (2008).
  • Rogers KL, Rupp ME, Fey PD. The presence of icaADBC is detrimental to the colonization of human skin by Staphylococcus epidermidis. Appl. Environ. Microbiol.74, 6155–6157 (2008).
  • Gill SR, Fouts DE, Archer GL et al. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J. Bacteriol.187, 2426–2438 (2005).
  • Graham JE, Wilkinson BJ. Staphylococcus aureus osmoregulation: roles for choline, glycine betaine, proline, and taurine. J. Bacteriol.174, 2711–2716 (1992).
  • Brook I. Bacterial interference. Crit. Rev. Microbiol.25, 155–172 (1999).
  • Jack RW, Tagg JR, Ray B. Bacteriocins of gram-positive bacteria. Microbiol. Rev.59, 171–200 (1995).
  • Bierbaum G, Sahl HG. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr. Pharm. Biotechnol.10, 2–18 (2009).
  • Bierbaum G, Gotz F, Peschel A, Kupke T, van de Kamp M, Sahl HG. The biosynthesis of the lantibiotics epidermin, gallidermin, Pep5 and epilancin K7. Antonie Van Leeuwenhoek69, 119–127 (1996).
  • Ekkelenkamp MB, Hanssen M, Danny Hsu ST et al. Isolation and structural characterization of epilancin 15X, a novel lantibiotic from a clinical strain of Staphylococcus epidermidis. FEBS Lett.579, 1917–1922 (2005).
  • Kaletta C, Entian KD, Kellner R, Jung G, Reis M, Sahl HG. Pep5, a new lantibiotic: structural gene isolation and prepeptide sequence. Arch. Microbiol.152, 16–19 (1989).
  • Schnell N, Entian KD, Schneider U et al. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature333, 276–278 (1988).
  • van de Kamp M, van den Hooven HW, Konings RN et al. Elucidation of the primary structure of the lantibiotic epilancin K7 from Staphylococcus epidermidis K7. Cloning and characterisation of the epilancin-K7-encoding gene and NMR analysis of mature epilancin K7. Eur. J. Biochem.230, 587–600 (1995).
  • Aso Y, Nagao J, Koga H et al. Heterologous expression and functional analysis of the gene cluster for the biosynthesis of and immunity to the lantibiotic, nukacin ISK-1. J. Biosci. Bioeng.98, 429–436 (2004).
  • Aso Y, Sashihara T, Nagao J et al. Characterization of a gene cluster of Staphylococcus warneri ISK-1 encoding the biosynthesis of and immunity to the lantibiotic, nukacin ISK-1. Biosci. Biotechnol. Biochem.68, 1663–1671 (2004).
  • Schnell N, Entian KD, Gotz F, Horner T, Kellner R, Jung G. Structural gene isolation and prepeptide sequence of gallidermin, a new lanthionine containing antibiotic. FEMS Microbiol. Lett.49, 263–267 (1989).
  • Navaratna MA, Sahl HG, Tagg JR. Identification of genes encoding two-component lantibiotic production in Staphylococcus aureus C55 and other phage group II S. aureus strains and demonstration of an association with the exfoliative toxin B gene. Infect. Immun.67, 4268–4271 (1999).
  • Draper LA, Ross RP, Hill C, Cotter PD. Lantibiotic immunity. Curr. Protein Pept. Sci.9, 39–49 (2008).
  • Otto M, Peschel A, Gotz F. Producer self-protection against the lantibiotic epidermin by the ABC transporter EpiFEG of Staphylococcus epidermidis Tu3298. FEMS Microbiol. Lett.166, 203–211 (1998).
  • Peschel A, Gotz F. Analysis of the Staphylococcus epidermidis genes epiF, -E, and -G involved in epidermin immunity. J. Bacteriol.178, 531–536 (1996).
  • Saris PE, Immonen T, Reis M, Sahl HG. Immunity to lantibiotics. Antonie Van Leeuwenhoek69, 151–159 (1996).
  • Diep BA, Gill SR, Chang RF et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet367, 731–739 (2006).
  • Otto M, Gotz F. ABC transporters of staphylococci. Res. Microbiol.152, 351–356 (2001).
  • Donvito B, Etienne J, Denoroy L, Greenland T, Benito Y, Vandenesch F. Synergistic hemolytic activity of Staphylococcus lugdunensis is mediated by three peptides encoded by a non-agr genetic locus. Infect. Immun.65, 95–100 (1997).
  • Mehlin C, Headley CM, Klebanoff SJ. An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization. J. Exp. Med.189, 907–918 (1999).
  • Wang R, Braughton KR, Kretschmer D et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat. Med.13, 1510–1514 (2007).
  • Beaudet R, Bisaillon JG, Saheb SA, Sylvestre M. Production, purification, and preliminary characterization of a gonococcal growth inhibitor produced by a coagulase-negative staphylococcus isolated from the urogenital flora. Antimicrob. Agents Chemother.22, 277–283 (1982).
  • Dhople VM, Nagaraj R. Generation of analogs having potent antimicrobial and hemolytic activities with minimal changes from an inactive 16-residue peptide corresponding to the helical region of Staphylococcus aureus δ-toxin. Protein Eng.8, 315–318 (1995).
  • Dhople VM, Nagaraj R. Conformation and activity of δ-lysin and its analogs. Peptides26, 217–225 (2005).
  • Watson DC, Yaguchi M, Bisaillon JG, Beaudet R, Morosoli R. The amino acid sequence of a gonococcal growth inhibitor from Staphylococcus haemolyticus. Biochem. J.252, 87–93 (1988).
  • Dhople VM, Nagaraj R. δ-toxin, unlike melittin, has only hemolytic activity and no antimicrobial activity: rationalization of this specific biological activity. Biosci. Rep.13, 245–250 (1993).
  • Miller MB, Bassler BL. Quorum sensing in bacteria. Annu. Rev. Microbiol.55, 165–199 (2001).
  • Camilli A, Bassler BL. Bacterial small-molecule signaling pathways. Science311, 1113–1116 (2006).
  • Ji G, Beavis RC, Novick RP. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl Acad. Sci. USA92, 12055–12059 (1995).
  • Mayville P, Ji G, Beavis R et al. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl Acad. Sci. USA96, 1218–1223 (1999).
  • Otto M, Sussmuth R, Jung G, Gotz F. Structure of the pheromone peptide of the Staphylococcus epidermidisagr system. FEBS Lett.424, 89–94 (1998).
  • Ji G, Beavis R, Novick RP. Bacterial interference caused by autoinducing peptide variants. Science276, 2027–2030 (1997).
  • Otto M, Sussmuth R, Vuong C, Jung G, Gotz F. Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidisagr pheromone and derivatives. FEBS Lett.450, 257–262 (1999).
  • Lina G, Boutite F, Tristan A, Bes M, Etienne J, Vandenesch F. Bacterial competition for human nasal cavity colonization: role of Staphylococcal agr alleles. Appl. Environ. Microbiol.69, 18–23 (2003).
  • Etz H, Minh DB, Henics T et al. Identification of in vivo expressed vaccine candidate antigens from Staphylococcus aureus. Proc. Natl Acad. Sci. USA99, 6573–6578 (2002).
  • Harrison LM, Morris JA, Lauder RM, Telford DR. The effect of Staphylococcus aureus carriage in late pregnancy on antibody levels to staphylococcal toxins in cord blood and breast milk. FEMS Immunol. Med. Microbiol.54, 137–143 (2008).
  • Verkaik NJ, de Vogel CP, Boelens HA et al. Anti-staphylococcal humoral immune response in persistent nasal carriers and noncarriers of Staphylococcus aureus. J. Infect. Dis.199, 625–632 (2009).
  • Wertheim HF, Vos MC, Ott A et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet364, 703–705 (2004).
  • Langley R, Wines B, Willoughby N, Basu I, Proft T, Fraser JD. The staphylococcal superantigen-like protein 7 binds IgA and complement C5 and inhibits IgA-Fc α RI binding and serum killing of bacteria. J. Immunol.174, 2926–2933 (2005).
  • Forsgren A, Nordstrom K. Protein A from Staphylococcus aureus: the biological significance of its reaction with IgG. Ann. NY Acad. Sci.236, 252–266 (1974).
  • Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect.5, 1317–1327 (2003).
  • Foster TJ. Immune evasion by staphylococci. Nat. Rev. Microbiol.3, 948–958 (2005).
  • Rooijakkers SH, van Kessel KP, van Strijp JA. Staphylococcal innate immune evasion. Trends Microbiol.13, 596–601 (2005).
  • Boman HG. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol.13, 61–92 (1995).
  • Hancock RE, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol.8, 402–410 (2000).
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature415, 389–395 (2002).
  • Giuliani A, Pirri G, Bozzi A, Di Giulio A, Aschi M, Rinaldi AC. Antimicrobial peptides: natural templates for synthetic membrane-active compounds. Cell. Mol. Life Sci.65, 2450–2460 (2008).
  • Mookherjee N, Hancock RE. Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell. Mol. Life Sci.64, 922–933 (2007).
  • Di Nardo A, Vitiello A, Gallo RL. Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J. Immunol.170, 2274–2278 (2003).
  • Agerberth B, Charo J, Werr J et al. The human antimicrobial and chemotactic peptides LL-37 and α-defensins are expressed by specific lymphocyte and monocyte populations. Blood96, 3086–3093 (2000).
  • Lee DY, Yamasaki K, Rudsil J et al. Sebocytes express functional cathelicidin antimicrobial peptides and can act to kill propionibacterium acnes. J. Invest. Dermatol.128, 1863–1866 (2008).
  • Nagy I, Pivarcsi A, Kis K et al.Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect.8, 2195–2205 (2006).
  • Davidson DJ, Currie AJ, Reid GS et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T-cell polarization. J. Immunol.172, 1146–1156 (2004).
  • De Y, Chen Q, Schmidt AP et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med.192, 1069–1074 (2000).
  • Yang D, Chertov O, Bykovskaia SN et al. β-defensins: linking innate and adaptive immunity through dendritic and T-cell CCR6. Science286, 525–528 (1999).
  • Schittek B, Hipfel R, Sauer B et al. Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat. Immunol.2, 1133–1137 (2001).
  • Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol.3, 710–720 (2003).
  • Harder J, Schroder JM. Antimicrobial peptides in human skin. Chem. Immunol. Allergy86, 22–41 (2005).
  • Harder J, Meyer-Hoffert U, Wehkamp K, Schwichtenberg L, Schroder JM. Differential gene induction of human β-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by retinoic acid. J. Invest. Dermatol.123, 522–529 (2004).
  • Harder J, Bartels J, Christophers E, Schroder JM. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem.276, 5707–5713 (2001).
  • Yang D, Chertov O, Oppenheim JJ. Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J. Leukoc. Biol.69, 691–697 (2001).
  • Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J. Leukoc. Biol.75, 39–48 (2004).
  • Durr UH, Sudheendra US, Ramamoorthy A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophy.s Acta1758, 1408–1425 (2006).
  • Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc. Natl Acad. Sci. USA92, 195–199 (1995).
  • Cowland JB, Johnsen AH, Borregaard N. hCAP-18, a cathelin/pro-bactenecin-like protein of human neutrophil specific granules. FEBS Lett.368, 173–176 (1995).
  • Murakami M, Ohtake T, Dorschner RA, Schittek B, Garbe C, Gallo RL. Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J. Invest. Dermatol.119, 1090–1095 (2002).
  • Wang TT, Nestel FP, Bourdeau V et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol.173, 2909–2912 (2004).
  • Rieg S, Garbe C, Sauer B, Kalbacher H, Schittek B. Dermcidin is constitutively produced by eccrine sweat glands and is not induced in epidermal cells under inflammatory skin conditions. Br. J. Dermatol.151, 534–539 (2004).
  • Steffen H, Rieg S, Wiedemann I et al. Naturally processed dermcidin-derived peptides do not permeabilize bacterial membranes and kill microorganisms irrespective of their charge. Antimicrob. Agents Chemother.50, 2608–2620 (2006).
  • Richards AM, Nicholls MG, Lewis L, Lainchbury JG. Adrenomedullin. Clin. Sci. (Lond.)91, 3–16 (1996).
  • Allaker RP, Kapas S. Adrenomedullin and mucosal defence: interaction between host and microorganism. Regul. Pept.112, 147–152 (2003).
  • Allaker RP, Zihni C, Kapas S. An investigation into the antimicrobial effects of adrenomedullin on members of the skin, oral, respiratory tract and gut microflora. FEMS Immunol. Med. Microbiol.23, 289–293 (1999).
  • Chipman DM, Sharon N. Mechanism of lysozyme action. Science165, 454–465 (1969).
  • Neu HC, Dreyfus J 3rd, Canfield RE. Effect of human lysozyme on gram-positive and gram-negative bacteria. Antimicrob. Agents Chemother. (Bethesda)8, 442–444 (1968).
  • Bera A, Biswas R, Herbert S, Gotz F. The presence of peptidoglycan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity. Infect. Immun.74, 4598–4604 (2006).
  • Bera A, Herbert S, Jakob A, Vollmer W, Gotz F. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol. Microbiol.55, 778–787 (2005).
  • Simpson AJ, Maxwell AI, Govan JR, Haslett C, Sallenave JM. Elafin (elastase-specific inhibitor) has anti-microbial activity against gram-positive and gram-negative respiratory pathogens. FEBS Lett.452, 309–313 (1999).
  • Williams SE, Brown TI, Roghanian A, Sallenave JM. SLPI and elafin: one glove, many fingers. Clin. Sci. (Lond.)110, 21–35 (2006).
  • Glaser R, Harder J, Lange H, Bartels J, Christophers E, Schroder JM. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat. Immunol.6, 57–64 (2005).
  • Corbin BD, Seeley EH, Raab A et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science319, 962–965 (2008).
  • Zhang J, Dyer KD, Rosenberg HF. Human RNase 7, a new cationic ribonuclease of the RNase A superfamily. Nucleic Acids Res.31, 602–607 (2003).
  • Dorschner RA, Lopez-Garcia B, Peschel A et al. The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides. FASEB J.20, 35–42 (2006).
  • Schittek B, Paulmann M, Senyurek I, Steffen H. The role of antimicrobial peptides in human skin and in skin infectious diseases. Infect. Disord. Drug Targets8, 135–143 (2008).
  • Aly R, Maibach HI, Shinefield HR. Microbial flora of atopic dermatitis. Arch. Dermatol.113, 780–782 (1977).
  • Leyden JJ, Marples RR, Kligman AM. Staphylococcus aureus in the lesions of atopic dermatitis. Br. J. Dermatol.90, 525–530 (1974).
  • Nomura I, Goleva E, Howell MD et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J. Immunol.171, 3262–3269 (2003).
  • Ong PY, Ohtake T, Brandt C et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med.347, 1151–1160 (2002).
  • Rieg S, Steffen H, Seeber S et al. Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J. Immunol.174, 8003–8010 (2005).
  • Harder J, Schroder JM. Psoriatic scales: a promising source for the isolation of human skin-derived antimicrobial proteins. J. Leukoc. Biol.77, 476–486 (2005).
  • Chronnell CM, Ghali LR, Ali RS et al. Human β defensin-1 and -2 expression in human pilosebaceous units: upregulation in acne vulgaris lesions. J. Invest. Dermatol.117, 1120–1125 (2001).
  • Philpott MP. Defensins and acne. Mol. Immunol.40, 457–462 (2003).
  • Gallo RL, Kim KJ, Bernfield M et al. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J. Biol. Chem.272, 13088–13093 (1997).
  • Pestonjamasp VK, Huttner KH, Gallo RL. Processing site and gene structure for the murine antimicrobial peptide CRAMP. Peptides22, 1643–1650 (2001).
  • Nizet V, Ohtake T, Lauth X et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature414, 454–457 (2001).
  • Quinn GA, Cole AM. Suppression of innate immunity by a nasal carriage strain of Staphylococcus aureus increases its colonization on nasal epithelium. Immunology122, 80–89 (2007).
  • Peschel A, Sahl HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Microbiol.4, 529–536 (2006).
  • Peschel A. How do bacteria resist human antimicrobial peptides? Trends Microbiol.10, 179–186 (2002).
  • Lai Y, Villaruz AE, Li M, Cha DJ, Sturdevant DE, Otto M. The human anionic antimicrobial peptide dermcidin induces proteolytic defence mechanisms in staphylococci. Mol. Microbiol.63, 497–506 (2007).
  • Sieprawska-Lupa M, Mydel P, Krawczyk K et al. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob. Agents Chemother.48, 4673–4679 (2004).
  • Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J. Immunol.172, 1169–1176 (2004).
  • Li M, Cha DJ, Lai Y, Villaruz AE, Sturdevant DE, Otto M. The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol. Microbiol.66, 1136–1147 (2007).
  • Peschel A, Jack RW, Otto M et al.Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J. Exp. Med.193, 1067–1076 (2001).
  • Perego M, Glaser P, Minutello A, Strauch MA, Leopold K, Fischer W. Incorporation of D-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J. Biol. Chem.270, 15598–15606 (1995).
  • Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Gotz F. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem.274, 8405–8410 (1999).
  • Vuong C, Voyich JM, Fischer ER et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell. Microbiol.6, 269–275 (2004).
  • Hachmann AB, Angert ER, Helmann JD. Genetic analysis of factors affecting susceptibility of Bacillus subtilis to daptomycin. Antimicrob. Agents Chemother.53, 1598–1609 (2009).
  • Otto M. Bacterial sensing of antimicrobial peptides. Contrib. Microbiol.16, 136–149 (2009).
  • Bader MW, Sanowar S, Daley ME et al. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell122, 461–472 (2005).
  • Li M, Lai Y, Villaruz AE, Cha DJ, Sturdevant DE, Otto M. Gram-positive three-component antimicrobial peptide-sensing system. Proc. Natl Acad. Sci. USA104, 9469–9474 (2007).
  • Coates T, Bax R, Coates A. Nasal decolonization of Staphylococcus aureus with mupirocin: strengths, weaknesses and future prospects. J. Antimicrob. Chemother.64, 9–15 (2009).
  • Kluytmans J, Harbarth S. Methicillin-resistant Staphylococcus aureus decolonization: ‘yes, we can,’ but will it help? Infect. Control Hosp. Epidemiol.30, 633–635 (2009).
  • Kiser KB, Cantey-Kiser JM, Lee JC. Development and characterization of a Staphylococcus aureus nasal colonization model in mice. Infect. Immun.67, 5001–5006 (1999).
  • Kokai-Kun JF. The cotton rat as a model for Staphylococcus aureus nasal colonization in humans: cotton rat S. aureus nasal colonization model. Methods Mol. Biol.431, 241–254 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.