7
Views
2
CrossRef citations to date
0
Altmetric
Review

UV immunosuppression and cutaneous malignancies

, &
Pages 61-74 | Published online: 10 Jan 2014

References

  • Han J, Colditz GA, Hunter DJ. Risk factors for skin cancers: a nested case-control study within the Nurses’ Health Study. Int. J. Epidemiol.35(6), 1514–1521 (2006).
  • Jerant AF, Johnson JT, Sheridan CD. Early detection and treatment of skin cancer. Am. Fam. Physician62(2), 357–368, 375–376, 381–382 (2000).
  • Wang SQ, Balagula Y, Osterwalder U. Photoprotection: a review of the current and future technologies. Dermatol. Ther.23(1), 31–47 (2010).
  • MacKie RM, Hauschild A, Eggermont AMM. Epidemiology of cutaneous melanoma. Ann. Oncol.20(Suppl. 6), vi1–vi7 (2009).
  • Young A, Wikonkái NM. The chronic effects of ultraviolet radiation on the skin: photocarcinogenesis. In: Photodermatology. Lim HW, Hönigsmann H, Hawk JLM (Eds). Informa Healthcare USA, NY, USA, 107–117 (2007).
  • Wang Y, DiGiovanna JJ, Stern JB et al. Evidence of ultraviolet type mutations in xeroderma pigmentosum melanomas. Proc. Natl Acad. Sci. USA106(15), 6279–6284 (2009)
  • Burnet M. Concepts of autoimmune disease and their implication for therapy. Perspect. Biol. Med.10(2), 141–151 (1967).
  • Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity21(2), 134–148 (2004).
  • Baron ED. The immune system and nonmelanoma skin cancers. In: Molecular Mechanisms of Basal Cell and Squamous Cell Carcinomas. Reichrath J (Ed.). Landes Biosciences, TX, USA, 43–48 (2006).
  • Jemec GB, Holm EA. Nonmelanoma skin cancer in organ transplant patients. Transplantation75(3), 253–257 (2003).
  • Veness MJ. Defining patients with high-risk cutaneous squamous cell carcinoma. Australas. J. Dermatol.47(1), 28–33 (2006).
  • Le Mire L, Hollywood K, Gray D et al. Melanomas in renal transplant recipients. Br. J. Dermatol.154(3), 472–477 (2006).
  • Jensen P, Hansen S, Moller B et al. Skin cancer in kidney and heart transplant recipients and different long-term immunosuppressive therapy regimens. J. Am. Acad. Deramatol.40(2), 177–186 (1999).
  • Frezza EE, Fung JJ, van Thiel DH. Non-lymphoid cancer after liver transplantation. Hepatogastroenterology44(16), 1172–1181 (1997).
  • Dantal J, Hourmant M, Cantarovich D et al. Effect of long-term immunosuppression on kidney-graft recipients on cancer incidence: randomised comparison of two cyclosporin regimens. Lancet351(9103), 623–628 (1998).
  • Wilkins K, Turner R, Dolev JC et al. Cutaneous malignancy and human immunodeficiency virus disease. J. Am. Acad. Dermatol.54(2), 189–206 (2006).
  • Nguyen P, Vin-Christian K, Ming ME et al. Aggressive squamous cell carcinomas in persons infected with the human immunodeficiency virus. Arch. Dermatol.138(6), 758–763 (2002).
  • Pardoll D. Does the immune system see tumors as foreign or self? Annu. Rev. Immunol.21, 807–839 (2003).
  • Santo Domingo D, Baron ED. Melanoma and nonmelanoma skin cancers and the immune system. In: Sunlight, Vitamin D and Skin Cancer. Reichrath J (Ed.). Landes Bioscience, TX, USA, 187–202 (2008).
  • Farnoush A, Mackenzie IC. Sequential histological changes and mast cell response in skin during chemically-induced carcinogenesis. J. Oral Pathol.12(4), 300–306 (1983).
  • Coussens LM, Werb Z. Matrix metalloproteinases and the development of cancer. Chem. Biol.3(11), 895–904 (1996).
  • Coussens LM, Tinkle CL, Hanahan D et al. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell103(3), 481–490 (2000).
  • Harrell MI, Iritani BM, Ruddell A. Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am. J. Pathol.170(2), 774–786 (2007).
  • Rosenberg SA, Sherry RM, Morton KE et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J. Immunol.175(9), 6169–6176 (2005).
  • Pardoll DM, Topalian SL. The role of CD4+ T-cell responses in antitumor immunity. Curr. Opin. Immunol.10(5), 588–594 (1998).
  • Nagai H, Horikawa T, Hara I et al. In vivo elimination of CD25+ regulatory T-cells leads to tumor rejection of B16F10 melanoma, when combined with interleukin-12 gene transfer. Exp. Dermatol.13(10), 613–620 (2004).
  • Turk MJ, Guevara-Patino JA, Rizzuto GA et al. Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T-cells. Exp. Med.200(6), 771–782 (2004).
  • Smyth MJ, Godfrey DI, Tapani JA. A fresh look at immunosurveillance and immunotherapy. Nat. Immunol.2(4), 293–299 (2001).
  • Merad M, Ginhoux F, Collin M. Origin, homeostasis, and function of langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol.8(12), 935–947 (2008).
  • Schwarz T, Halliday GM. Photoimmunology. In: Photodermatology. Lim HW, Hönigsmann H, Hawk JLM (Eds). Informa Healthcare USA, NY, USA, 55–74 (2007).
  • Hanneman KK, Cooper KD, Baron ED. Ultraviolet immunosuppression: mechanisms and consequences. Dermatol. Clin.24, 19–25 (2006).
  • Toews GB, Bergstresser PR, Streilein JW. Epidermal Langerhans cell density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB. J. Immunol.124(1), 445–453 (1980).
  • Aberer W, Schuler G, Stingl G et al. Ultraviolet light depletes surface markers of Langerhans cells. J. Invest. Dermatol.76(3), 202–210 (1981).
  • Noonan FP, De Fabo EC, Kripke ML. Suppression of contact hypersensitivity by ultraviolet radiation: an experimental model. Springer Semin. Immunopathol.4(3), 293–304 (1981).
  • Morrison WL, Bucana C, Kripke ML. Systemic suppression of contact hypersensitivity by UVB radiation is unrelated to UVB-induced alterations in the morphology and number of Langerhans cells. Immunology52(2), 299–306 (1984).
  • Schwarz T, Urbanska A, Gschnait F, Luger TA. Inhibition of the induction of contact hypersensitivity by a UV-mediated epidermal cytokine. J. Invest. Dermatol.87(2), 289–291 (1986).
  • Cooper KD, Oberhelman L, Hamilton TA et al. UV exposure reduces immunization rates and promotes tolerance to epicutaneous antigens in humans: relationship to dose, CD1a-DR+ epidermal macrophage induction, and Langerhans cell depletion. Proc. Natl Acad. Sci. USA89(18), 8497–8501 (1992).
  • Bennett CL, van Rijn E, Steffen J et al. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J. Cell Biol.169(4), 569–576 (2005),
  • Kissenpfennig A, Henri S, Dubois B et al. Dynamics and functions of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity22(5), 643–654 (2005).
  • Kaplan DH, Jenison MC, Saeland S et al. Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity23(6), 611–620 (2005).
  • Hammerberg C, Duraiswamy N, Cooper KD. Temporal correlation between UV radiation locally-inducible tolerance and the sequential appearance of dermal, then epidermal, class II MHC+CD11b+ monocytic/macrophagic cells J. Invest. Dermatol.107(5), 755–763 (1996).
  • Yoshida Y, Kang K, Berger M et al. Monocyte induction of IL-10 and down-regulation of IL-12 by iC3b deposited in ultraviolet-exposed human skin. J. Immunol.161(11) 5873–5879 (1998).
  • Yoshida Y, Kang K, Chen G et al. Cellular fibronectin is induced in ultraviolet-exposed human skin and induces IL-10 production by monocytes/macrophages. J. Invest. Dermatol.113(1), 49–55 (1999).
  • Takahara M, Kang K, Liu Liming et al. iC3b arrests monocytic cell differentiation into CD1c-expressing dendritic cell precursors: a mechanism for transiently decreased dendritic cells in vivo after human skin injury by ultraviolet B. J. Invest. Dermatol.120(5), 802–809 (2003).
  • Toichi E, Lu KQ, Swick AR, McCormick TS et al. Skin-infiltrating monocytes/macrophages migrate to draining lymph nodes and produce IL-10 after contact sensitizer exposure to UV-irradiated skin. J. Invest. Dermatol.128(11), 2705–2715 (2008).
  • Ritter U, Meißner A, Scheidig C et al. CD8α- and langerin-negative dendritic cells but not Langerhans cells, act as principle antigen-presenting cells in leishmaniasis. Eur. J. Immunol.34(6), 1542–1550 (2004).
  • Fukunaga A, Khaskhely NM, Sreevidya CS et al. Dermal dendritic cells, no Langerhans cells, play an essential role in inducing an immune response. J. Immunol.180(5), 3057–3064 (2008)
  • Poulin LF, Henri S, de Bovis B et al. The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J. Exp. Med.204(13), 3119–3131 (2007).
  • Ginhoux F, Collin MP, Bogunovic M et al. Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J. Exp. Med.204(13), 3133–3146 (2007).
  • Bursch LS, Wang L, Igyarto B et al. Identification of a novel population of langerin+ dendritic cells. J. Exp. Med.204(13), 3147–3156 (2007).
  • Bobr A, Olvera-Gomez I, Igyarto BZ et al. Acute ablation of langerhans cells enhances skin immune responses. J. Immunol.185(8), 4724–4728 (2010).
  • Fukunaga A, Khaskhely NM, Ma Y et al. Langerhans cells serve as immunoregulatory cells by activating NKT cells. J. Immunol.185(8), 4633–4640 (2010).
  • Yoshiki R, Kabashima K, Sakabe J et al. The mandatory role of IL-10 producing OX40 ligand-expressing mature Langerhans cells in local UVB-induced immunosuppression. J. Immunol.184(10), 5670–5677 (2010).
  • Schwartz T. Mechanisms of UV-induced immunosuppression. Keio J. Med.54(4), 165–171 (2005).
  • Schwarz A, Noordegraaf M, Maeda A et al. Langerhans cells are required for UVR-induced immunosuppression. J. Invest. Dermatol.130(5), 1419–1427 (2010).
  • Green EA, Choi Y, Flavell RA. Pancreatic lymph node-derived CD4+ 25+ Treg cells: highly potent regulators of diabetes that require TRANCE-RANK signals. Immunity16(2), 183–191 (2002).
  • Loser K, Mehling A, Loeser S et al. Epidermal RANKL controls regulatory T cell numbers via activation of dendritic cells. Nat. Med.12(12), 1372–1379 (2006).
  • Norman AW. Sunlight, season, skin pigmentation, vitamin D, and 25-hydroxyvitamin D: integral components of the vitamin D endocrine system. Am. J. Clin. Nutr.67(6), 1108–1110 (1998).
  • Schwarz T. 25 Years of UV-induced immunosuppression mediated by T cells-from disregarded T suppressor cells to the highly respected regulatory T cells. Photochem. Photobiol.84(1), 10–18 (2008).
  • Schwarz A, Beissert S, Grosse-Heitmeyer K. Evidence for functional relevance of CTLA-4 in ultraviolet-radiation-induced tolerance. J. Immunol.165(4), 1824–1831 (2000).
  • Ghoreishi M, Dutz JP. Tolerance induction by transcutaneous immunization through ultraviolet-irridated skin is transferable through CD4+CD25+ T regulatory cells and is dependent on host-derived IL-10. J. Immunol.176(4), 2635–2644 (2006).
  • Gorman S, Tan JWY, Yerkovich ST et al. CD4+ T cells in lymph nodes of UVB-irradiated mice suppress immune responses to new antigens both in vitro and in vivo. J. Invest. Dermatol.127(4), 915–924 (2007).
  • Rana S, Byrne SN, MacDonald LJ. Ultraviolet B suppresses immunity by inhibiting effector and memory T cells. Am. J. Pathol.24(1), 127–137 (2010).
  • Balato A, Ununtmaz D, Gaspari AA. Natural killer T cells: an unconventional T-cell subset with diverse effector and regulatory functions. J. Invest. Dermatol.129(7), 1628–1642 (2009).
  • Crowe NY, Croquet JM, Berzins SP et al. Differential antitumor immunity mediated by NKT cell subsets in vivo. J. Exp. Med.202(9), 1279–1288 (2005).
  • Terabe M, Swann J, Ambrosino E et al. A nonclassical non-Vα14Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J. Exp. Med.202(12), 1627–1633 (2005).
  • Moodycliffe AM, Nghiem D, Clydesdale G et al. Immunosuppression and skin cancer development: regulation by NKT cells. Nat. Immunol.1(6), 521–525 (2000).
  • Girardi M, Oppenheim DE, Steele CR et al. Regulation of cutaneous malignancy by γδ T cells. Science294(5542), 605–609 (2001).
  • Pardoll DM. Immunology. Stress, NK receptors and immune surveillance. Science294(5542), 534–536 (2004).
  • Kim J, Modlin RL, Moy RL et al. IL-10 production in cutaneous basal and squamous cell carcinomas. a mechanism for evading the local T cell immune response. J. Immunol.155(4), 2240–2247 (1995).
  • Rivas JM, Ullrich SE. Systemic suppression of DTH by supernatants from UV-irradiated keratinocytes: an essential role for interleukin-10. J. Immunol.149(12), 3865–3871 (1992).
  • Enk AH, Saloga J, Becker D et al. Induction of hapten-specific tolerance by interleukin-10 in vivo. J. Exp. Med.179(4), 1397–1402 (1994).
  • Loser K, Apelt J, Voskort M. IL-10 controls ultraviolet-induced carcinogenesis in mice. J. Immunol.179(1), 165–171 (2007).
  • Li-Weber M, Krammer PH. Regulation of IL4 gene expression by T cells and therapeutic perspectives. Nat. Rev. Immunol.3(7), 534–543 (2003).
  • Moore RJ, Owens DM, Stamp G et al. Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Nat. Med.5(7), 828–831 (1999).
  • Schmitt DA, Owen-Schaub L, Ullrich SE. Effect of IL-12 on immune suppression and suppressor cell induction by ultraviolet radiation. J. Immunol.154(10), 5114–5120 (1995).
  • Schmitt DA, Walterscheid JP, Ullrich SE. Reversal of ultraviolet radiation induced immunosuppression by recombinant interleukin-12: suppression of cytokine production. Immunology101(1), 90–96 (2000).
  • Schwartz A, Stander S, Berneburg M et al. Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. J. Exp. Med.4(1), 26–31 (2002).
  • Schwarz A, Maeda A, Kernebeck K et al. Prevention of UV radiation-induced immunosuppression by IL-12 is dependent on DNA repair. J. Exp. Med.201(2), 173–179 (2005).
  • Walters IB, Ozawa M, Cardinale I et al. Narrowband (312-nm) UV-B suppresses interferon γ and interleukin (IL) 12 and increases IL-4 transcripts: differential regulation of cytokines at the single-cell level. Arch. Dermatol.139(2), 155–161 (2003).
  • Schwarz A, Maeda A, Ständer S et al. IL-18 reduces ultraviolet radiation-induced DNA damage and thereby immunosuppression. J. Immunol.176(5), 2896–2901 (2010).
  • Aoki M, Pawankar R, Niimi Y et al. Mast cells in basal cell carcinoma express VEGF, IL-8, and RANTES. Int. Arch. Allergy Immunol.130(3), 216–223 (2003).
  • Aoki M, Pawankar R, Niimi Y et al. Human mast cells release metalloproteinase-9 on contact with activated T cells: juxtacrine regulation by TNF-α. J. Immunol.167(7), 4008–4016 (2001).
  • Hart PH, Grimbaldeston MA, Swift GJ et al. Dermal mast cells determine susceptibility to ultraviolet B-induced systemic suppression of contact hypersensitivity responses in mice. J. Exp. Med.187(12), 2045–2053 (1998).
  • Byrne SN, Limón-Flores AY, Ullrich SE. Mast cells migration from the skin to the draining lymph nodes upon ultraviolet irradiation represents a key step in the induction of immune suppression. J. Immunol.180(7), 4648–4655 (2007).
  • Yarosh DB. DNA repair, immunosuppression, and skin cancer. Cutis74(Suppl. 5), 10–13 (2004).
  • Proietti De Santis L, Garcia CL, Balajee AS et al. Transcription coupled repair efficiency determines the cell cycle progression and apoptosis after UV exposure in hamster cells. DNA Repair (AMST)1(3), 209–223 (2002).
  • Costa RM, Chiganças V, Galhardo Rda S, Carvalho H, Menck CF. The eukaryotic nucleotide excision repair pathway. Biochimie85(11), 1083–1099 (2003).
  • Ford JM. Regulation of DNA damage recognition and nucleotide excision repair: another role for p53. Mutat. Res.577(1–2), 195–202 (2005).
  • Besaratinia A, Synold TW, Chen HH et al. DNA lesions induced by UV A1 and B radiation in human cells: comparative analyses in the overall genome and in the p53 tumor suppressor gene. Proc. Natl Acad. Sci. USA102(29), 10058–10063 (2005).
  • Batista LF, Kaina B, Meneghini R et al. How DNA lesions are turned into powerful killing structures: insights from UV-induced apoptosis. Mutat. Res.681(2–3), 197–208 (2009).
  • Zhang X, Wu RS, Fu W et al. Production of reactive oxygen species and 8-hydroxyl-2´deoxyguanosine in KB cells co-exposed to benzo[a]pyrene and UV-A radiation. Chemosphere55(10), 1303–1308 (2004).
  • Javeri A, Huang XX, Bernerd F et al. Human 8-oxoguanine-DNA glycosylase 1 protein and gene are expressed more abundantly in the superficial than basal layer of human epidermis. DNA Repair7(9), 1542–1550 (2008).
  • Cooper KD. Cell-mediated immunosuppressive mechanisms induced by UV radiation. Photochem. Photobiol.63(4), 400–406 (1996).
  • Barresi C, Stremnitzer C, Mlitz V et al. Increased sensitivity of histidiniemic mice to UVB radiation suggests a crucial role of endogenous urocanic acid in photoprotection. J. Invest. Dermatol.131(1), 188–194 (2011).
  • Kammeyer A, Eggelte TA, Overmars H et al. Oxidative breakdown and conversion of urocanic acid isomers by hydroxyl radical generating systems. Biochem. Biophys. Acta1526(2), 277–285 (2001).
  • Kurimoto I, Streilein JW. cis urocanic acid suppression of contact hypersensitivity induction is mediated via tumor necrosis factor-α. J. Immunol.148(10), 3072–3078 (1992).
  • Beissert ST, Mohammad H, Torri A et al. Regulation of tumor antigen presentation by urocanic acid. J. Immunol.159(1), 92–96 (1997).
  • Gruner SW, Diezel H, Stoppe H et al. Inhibition of skin allograft rejection and acute graft-versus-host disease by cis-urocanic acid. J. Invest. Dermatol.98(4), 459–462 (1992).
  • Filipec ME, Letko Z, Haskova D et al. The effect of urocanic acid on graft rejection in an experimental model of orthotopic corneal transplantation in rabbits. Graefes Arch. Clin. Exp. Ophthalmol.236(1), 65–68 (1998).
  • Kaneko K, Smetana-Just U, Matsui M et al.cis-urocanic acid initiates gene transcription in primary human keratinocytes. J. Immunol.181(1), 217–224 (2008).
  • Halliday GM. Common links among the pathways leading to UV-induced immunosuppression. J. Invest. Dermatol.130(5), 1209–1212 (2010).
  • Sreevidya CS, Fukunaga A, Khaskhely NM et al. Agents that reverse UV-induced immune suppression and photocarcinogenesis affect DNA repair. J. Invest. Dermatol.130(5), 1428–1437 (2010).
  • Katiyar SK, Challa A, McCormick TS, Cooper KD, Mukhtar H. Prevention of UVB-induced immunosuppression in mice by green tea polyphenol (-)-epigallocatechin-3-gallate may be associated with alterations in IL-10 and IL-12 production. Carcinogenesis20(11), 2117–2124 (1999).
  • Kuchel JM, Barnetson RSC, Zhuang L et al. Tamarind inhibits solar-simulated ultraviolet radiation-induced suppression of recall responses in humans. Lett. Drug Design Discov.2(2), 165–171 (2005).
  • Camouse MM, Domingo DS, Swain FR et al. Topical application of green and white tea extracts provides protection from solar-simulated ultraviolet light in human skin. Exp. Dermatol.18(6), 522–526 (2009).
  • Yamaguchi LF, Kato MJ, Di Mascio P. et al. Biflavonoids from Araucaria angustifolia protects against UV-induced damage. Phytochemistry70(5), 615–620 (2009).
  • Afaq F, Zaid MA, Khan N et al. Protective effect of pomegranate-derived products on UVB-mediated damage in human reconstituted skin. Exp. Dermatol.18(6), 553–561 (2009).
  • Matthews YJ, Halliday GM, Phan TA, Damian DL. A UVB wavelength dependency for local suppression of recall immunity in humans demonstrates a peak at 300nm. J. Invest. Dermatol.130(6), 1680–1684 (2010).
  • Freeman SE, Hacham H, Grange RW et al. Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ with ultraviolet light. Proc. Natl Acad. Sci. USA86(14), 5605–5609 (1989).
  • McLoone P, Simics E, Barton A et al. An action spectrum for the production of cis-urocanic acid in human skin in vivo. J. Invest. Dermatol.124(5), 1071–1074 (2005).
  • Matthews YJ, Halliday GM, Phan TA, Damian DL. Wavelength dependency for UVA-induced suppression of recall immunity in humans. J. Dermatol. Sci. DOI: 10.1016/j.jdermsci.2010.07.005 (2010) (Epub ahead of print).
  • Furio L, Berthier-Vergnes O, Ducarre B et al. UVA radiation impairs phenotypic and functional maturation of human dermal dendritic cells. J. Invest. Dermatol.125(5), 1032–1038 (2005).
  • Walterscheid JP, Ullrich SE, Nghiem DX. Platelet-activating factor, a molecular sensor for cellular damage, activates systemic immune suppression. J. Exp. Med.195(2), 171–179 (2002).
  • Shreedhar V, Giese T, Sung VW et al. A cytokine cascade including prostaglandin E-2, IL-4, and IL-10 is responsible for UV-induced systemic immune suppression. J. Immunol.160(8), 3783–3789 (1998).
  • Sasaki M, Yamaoka J, Miyachi Y. The effect of ultraviolet B irradiation on nitric oxide synthase expression in murine keratinocytes. Exp. Dermatol.9(6), 417–422 (2000).
  • Warren JB, Loi RK, Coughlan ML. Involvement of nitric oxide synthase in the delayed vasodilator response to ultraviolet light irradiation of rat skin in vivo. Br. J. Pharmacol.109(3), 802–806 (1993).
  • Zingarelli B, O’Connor M, Wong H et al. Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. J. Immunol.156(1), 350–358 (1996).
  • Yuen KS, Nearn MR, Halliday GM. Nitric oxide-mediated depletion of Langerhans cells from the epidermis may be involved in UVA radiation-induced immunosuppression. Nitric Oxide6(3), 313–318 (2002).
  • Russo PAJ, Halliday GM. Inhibition of nitric oxide and reactive oxygen species production improves the ability of a sunscreen to protect from sunburn, immunosuppression and photocarcinogenesis. Br. J. Dermatol.155(2), 408–415 (2006).
  • Sano S, Chan KS, Kira M et al. Signal transducer and activator of transcription 3 is a key regulator of keratinocyte survival and proliferation following UV irradiation. Cancer Res.65(13), 5720–5729 (2005).
  • Sumita N, Bito T, Nakajima K, Nishigori C. Stat3 activation is required for cell proliferation and tumorigenesis but not for cell viability in cutaneous squamous cell carcinoma cell lines. Exp. Dermatol.15(4), 291–299 (2006).
  • Bito T, Sumita N, Masaki T et al. Ultraviolet light induces Stat3 activation in human keratinocytes and fibroblasts through reactive oxygen species and DNA damage. Exp. Dermatol.19(7), 654–660 (2010).
  • Baron ED, Fourtanier A, Compan D et al. High ultraviolet A protection affords greater immune protection confirming that ultraviolet A contributes to photoimmunosuppression in humans. J. Invest. Dermatol.121(4), 869–875 (2003).
  • Ke MS, Camouse MM, Swain FR et al. UV protective effects of DNA repair enzymes and RNA lotion. Photochem. Photobiol.84(1), 180–184 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.