22
Views
2
CrossRef citations to date
0
Altmetric
General content - Review

The molecular basis of cutaneous aging

&
Pages 525-536 | Published online: 10 Jan 2014

References

  • Faragher RG, Sheerin AN, Ostler EL. Can we intervene in human ageing? Expert Rev. Mol. Med.11, e27 (2009).
  • Yaar M, Eller MS, Gilchrest BA. Fifty years of skin aging. J. Investig. Dermatol. Symp. Proc.7, 51–58 (2002).
  • Kligman AM. Early destructive effect of sunlight on human skin. JAMA210, 2377–2380 (1969).
  • Calles C, Schneider M, Macaluso F, Benesova T, Krutmann J, Schroeder P. Infrared A radiation influences the skin fibroblast transcriptome: mechanisms and consequences. J. Invest. Dermatol.130, 1524–1536 (2010).
  • Morita A, Torii K, Maeda A, Yamaguchi Y. Molecular basis of tobacco smoke-induced premature skin aging. J. Investig. Dermatol. Symp. Proc.4, 53–55 (2009).
  • Vierkotter A, Schikowski T, Ranft U et al. Airborne particle exposure and extrinsic skin aging. J. Invest. Dermatol.130, 2719–2726 (2010).
  • Campisi J. Replicative senescence: an old lives’ tale? Cell84, 497–500 (1996).
  • Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res.37, 614–636 (1965).
  • Schneider EL, Mitsui Y. The relationship between in vitro cellular aging and in vivo human age. Proc. Natl Acad. Sci. USA73, 3584–3588 (1976).
  • Martin GM, Sprague CA, Epstein CJ. Replicative life-span of cultivated human cells. Effects of donor’s age, tissue, and genotype. Lab. Invest.23, 86–92 (1970).
  • Itahana K, Campisi J, Dimri GP. Mechanisms of cellular senescence in human and mouse cells. Biogerontology5, 1–10 (2004).
  • Gilchrest BA, Kurutmann J. Skin Aging. Springer, Berlin, Germany (2006).
  • de Lange T. How telomeres solve the end-protection problem. Science326, 948–952 (2009).
  • Gilchrest BA, Eller MS, Yaar M. Telomere-mediated effects on melanogenesis and skin aging. J. Investig. Dermatol. Symp. Proc.14, 25–31 (2009).
  • Griffith JD, Comeau L, Rosenfield S et al. Mammalian telomeres end in a large duplex loop. Cell97, 503–514 (1999).
  • Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp. Cell Res.25, 585–621 (1961).
  • Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature345, 458–460 (1990).
  • Ning Y, Xu J F, Li Y et al. Telomere length and the expression of natural telomeric genes in human fibroblasts. Hum. Mol. Genet.12, 1329–1336 (2003).
  • Johnson FB, Sinclair DA, Guarente L. Molecular biology of aging. Cell96, 291–302 (1999).
  • Rubin H. The disparity between human cell senescence in vitro and lifelong replication in vivo. Nat. Biotechnol.20, 675–681 (2002).
  • Friedrich U, Griese E, Schwab M, Fritz P, Thon K, Klotz U. Telomere length in different tissues of elderly patients. Mech. Ageing Dev.119, 89–99 (2000).
  • Sugimoto M, Yamashita R, Ueda M. Telomere length of the skin in association with chronological aging and photoaging. J. Dermatol. Sci.43, 43–47 (2006).
  • Lindsey J, McGill NI, Lindsey LA, Green DK, Cooke HJ. In vivo loss of telomeric repeats with age in humans. Mutat. Res.256, 45–48 (1991).
  • Nakamura K, Izumiyama-Shimomura N, Sawabe M et al. Comparative analysis of telomere lengths and erosion with age in human epidermis and lingual epithelium. J. Invest. Dermatol.119, 1014–1019 (2002).
  • Allsopp RC, Vaziri H, Patterson C et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad. Sci. USA89, 10114–10118 (1992).
  • von Zglinicki T, Saretzki G, Ladhoff J, d’Adda di Fagagna F, Jackson S P. Human cell senescence as a DNA damage response. Mech. Ageing Dev.126, 111–117 (2005).
  • Petersen S, Saretzki G, von Zglinicki T. Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp. Cell Res.239, 152–160 (1998).
  • Oikawa S, Kawanishi S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett.453, 365–368 (1999).
  • Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell43, 405–413 (1985).
  • Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat. Rev. Genet.6, 611–622 (2005).
  • Blasco MA. Telomere length, stem cells and aging. Nat. Chem. Biol.3, 640–649 (2007).
  • Harle-Bachor C, Boukamp P. Telomerase activity in the regenerative basal layer of the epidermis inhuman skin and in immortal and carcinoma-derived skin keratinocytes. Proc. Natl Acad. Sci.93, 6476–6481 (1996).
  • Ramirez RD, Wright WE, Shay JW, Taylor RS. Telomerase activity concentrates in the mitotically active segments of human hair follicles. J. Invest. Dermatol.108, 113–117 (1997).
  • Calado RT, Young NS. Telomere diseases. N. Engl. J. Med.361, 2353–2365 (2009).
  • Nanni S, Narducci M, Della Pietra L et al. Signaling through estrogen receptors modulates telomerase activity in human prostate cancer. J. Clin. Invest.110, 219–227 (2002).
  • Calado RT, Yewdell WT, Wilkerson KL et al. Sex hormones, acting on the TERT gene, increase telomerase activity in human primary hematopoietic cells. Blood114, 2236–2243 (2009).
  • Funk WD, Wang CK, Shelton DN, Harley CB, Pagon GD, Hoeffler WK. Telomerase expression restores dermal integrity to in vitro-aged fibroblasts in a reconstituted skin model. Exp. Cell Res.258, 270–278 (2000).
  • Bodnar AG, Ouellette M, Frolkis M et al. Extension of life-span by introduction of telomerase into normal human cells. Science279, 349–352 (1998).
  • Jiang XR, Jimenez G, Chang E et al. Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat. Genet.21, 111–114 (1999).
  • Stewart SA, Hahn WC, O’Connor BF et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc. Natl Acad. Sci. USA99, 12606–12611 (2002).
  • Gonzalez-Suarez E, Geserick C, Flores JM, Blasco MA. Antagonistic effects of telomerase on cancer and aging in K5-mTert transgenic mice. Oncogene24, 2256–2270 (2005).
  • Tomas-Loba A, Flores I, Fernandez-Marcos PJ et al. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell135, 609–622 (2008).
  • Donate LE, Blasco MA. Telomeres in cancer and ageing. Philos. Trans. R. Soc. Lond. B Biol. Sci.366, 76–84 (2011).
  • Tyner SD, Venkatachalam S, Choi J et al. p53 mutant mice that display early ageing-associated phenotypes. Nature415, 45–53 (2002).
  • Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science283, 1321–1325 (1999).
  • van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell92, 401–413 (1998).
  • Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature448, 1068–1071 (2007).
  • Hart RW, Setlow RB. Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species. Proc. Natl Acad. Sci. USA71, 2169–2173 (1974).
  • Kato H, Harada M, Tsuchiya K, Moriwaki K. Absence of correlation between DNA repair in ultraviolet irradiated mammalian cells and life span of the donor species. Jap. J. Genet.55, 99–108 (1980).
  • Pospelova TV, Demidenko ZN, Bukreeva EI, Pospelov VA, Gudkov AV, Blagosklonny MV. Pseudo-DNA damage response in senescent cells. Cell Cycle8, 4112–4118 (2009).
  • Rodier F, Coppe JP, Patil CK et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol.1, 973–979 (2009).
  • Demidenko ZN, Zubova SG, Bukreeva EI, Pospelov VA, Pospelova TV, Blagosklonny MV. Rapamycin decelerates cellular senescence. Cell Cycle8, 1888–1895 (2009).
  • Harrison DE, Strong R, Sharp ZD et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature460, 392–395 (2009).
  • Seshadri T, Campisi J. Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts. Science247, 205–209 (1990).
  • Hara E, Yamaguchi T, Nojima H et al. Id-related genes encoding helix-loop-helix proteins are required for G1 progression and are repressed in senescent human fibroblasts. J. Biol. Chem.269, 2139–2145 (1994).
  • Stein GH, Drullinger LF, Robetorye RS, Pereira-Smith OM, Smith JR. Senescent cells fail to express cdc2, cycA, and cycB in response to mitogen stimulation. Proc. Natl Acad. Sci. USA88, 11012–11016 (1991).
  • Dimri GP, Hara E, Campisi J. Regulation of two E2F-related genes in presenescent and senescent human fibroblasts. J. Biol. Chem.269, 16180–16186 (1994).
  • Stein GH, Beeson M, Gordon L. Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science249, 666–669 (1990).
  • Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp. Cell Res.211, 90–98 (1994).
  • Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc. Natl Acad. Sci. USA93, 13742–13747 (1996).
  • Hara E, Smith R, Parry D, Tahara H, Stone S, Peters G. Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol. Cell Biol.16, 859–867 (1996).
  • Baur JA, Zou Y, Shay JW, Wright WE. Telomere position effect in human cells. Science292, 2075–2077 (2001).
  • Lou Z, Wei J, Riethman H et al. Telomere length regulates ISG15 expression in human cells. Aging (Albany NY)1, 608–621 (2009).
  • Chiang YJ, Hemann MT, Hathcock KS et al. Expression of telomerase RNA template, but not telomerase reverse transcriptase, is limiting for telomere length maintenance in vivo. Mol. Cell Biol.24, 7024–7031 (2004).
  • Blasco MA, Lee HW, Hande MP et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell91, 25–34 (1997).
  • Liu Y, Snow BE, Hande MP et al. The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo. Curr. Biol.10, 1459–1462 (2000).
  • Rudolph KL, Chang S, Lee HW et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell96, 701–712 (1999).
  • Jaskelioff M, Muller FL, Paik JH et al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature469, 102–106 (2011).
  • Harman D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol.11, 298–300 (1956).
  • Blagosklonny MV, Campisi J, Sinclair DA et al. Impact papers on aging in 2009. Aging (Albany NY)2, 111–121 (2010).
  • Perez VI, Van Remmen H, Bokov A, Epstein CJ, Vijg J, Richardson A. The overexpression of major antioxidant enzymes does not extend the lifespan of mice. Aging Cell8, 73–75 (2009).
  • Van Raamsdonk JM, Hekimi S. Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet.5, e1000361 (2009).
  • Adler AS, Kawahara TL, Segal E, Chang HY. Reversal of aging by NFκB blockade. Cell Cycle7, 556–559 (2008).
  • Wlaschek M, Briviba K, Stricklin GP, Sies H, Scharffetter-Kochanek K. Singlet oxygen may mediate the ultraviolet A-induced synthesis of interstitial collagenase. J. Invest. Dermatol.104, 194–198 (1995).
  • Fu X, Parks WC, Heinecke JW. Activation and silencing of matrix metalloproteinases. Semin. Cell Dev. Biol.19, 2–13 (2008).
  • Masaki H. Role of antioxidants in the skin: anti-aging effects. J. Dermatol. Sci.58, 85–90 (2010).
  • Draelos ZD. Nutrition and enhancing youthful-appearing skin. Clin. Dermatol.28, 400–408 (2010).
  • Koziel R, Greussing R, Maier AB, Declercq L, Jansen-Durr P. Functional interplay between mitochondrial and proteasome activity in skin aging. J. Invest. Dermatol.131, 594–603 (2011).
  • Oikawa S, Tada-Oikawa S, Kawanishi S. Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening. Biochemistry40, 4763–4768 (2001).
  • Henle ES, Han Z, Tang N, Rai P, Luo Y, Linn S. Sequence-specific DNA cleavage by Fe2+-mediated fenton reactions has possible biological implications. J. Biol. Chem.274, 962–971 (1999).
  • Sahin E, Colla S, Liesa M et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature470, 359–365 (2011).
  • Krutmann J, Schroeder P. Role of mitochondria in photoaging of human skin: the defective powerhouse model. J. Investig. Dermatol. Symp. Proc.14, 44–49 (2009).
  • Yaar M, Gilchrest BA. Photoageing: mechanism, prevention and therapy. Br. J. Dermatol.157, 874–887 (2007).
  • Widmer R, Ziaja I, Grune T. Protein oxidation and degradation during aging: role in skin aging and neurodegeneration. Free Radic. Res.40, 1259–1268 (2006).
  • Sitte N, Huber M, Grune T et al. Proteasome inhibition by lipofuscin/ceroid during postmitotic aging of fibroblasts. FASEB J.14, 1490–1498 (2000).
  • McClintock D, Ratner D, Lokuge M et al. The mutant form of lamin A that causes Hutchinson–Gilford progeria is a biomarker of cellular aging in human skin. PLoS ONE2, e1269 (2007).
  • Robert L, Molinari J, Ravelojaona V, Andres E, Robert AM. Age- and passage-dependent upregulation of fibroblast elastase-type endopeptidase activity. Role of advanced glycation endproducts, inhibition by fucose- and rhamnose-rich oligosaccharides. Arch. Gerontol. Geriatr.50, 327–331 (2010).
  • Sohal RS, Allen RG. Relationship between metabolic rate, free radicals, differentiation and aging: a unified theory. Basic Life Sci.35, 75–104 (1985).
  • Haigis MC, Guarente LP. Mammalian sirtuins – emerging roles in physiology, aging, and calorie restriction. Genes Dev.20, 2913–2921 (2006).
  • Lin SJ, Kaeberlein M, Andalis AA et al. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature418, 344–348 (2002).
  • Westerheide SD, Anckar J, Stevens SM Jr, Sistonen L, Morimoto RI. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science323, 1063–1066 (2009).
  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature434, 113–118 (2005).
  • Cheng HL, Mostoslavsky R, Saito S et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl Acad. Sci. USA100, 10794–10799 (2003).
  • Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell123, 437–448 (2005).
  • Rochette PJ, Brash DE. Human telomeres are hypersensitive to UV-induced DNA damage and refractory to repair. PLoS Genet.6(4), e1000926 (2010).
  • Koch H, Wittern KP, Bergemann J. In human keratinocytes the common deletion reflects donor variabilities rather than chronologic aging and can be induced by ultraviolet A irradiation. J. Invest. Dermatol.117, 892–897 (2001).
  • Schroeder P, Gremmel T, Berneburg M, Krutmann J. Partial depletion of mitochondrial DNA from human skin fibroblasts induces a gene expression profile reminiscent of photoaged skin. J. Invest. Dermatol.128, 2297–2303 (2008).
  • Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-β type II receptor/SMAD signaling. Am. J. Pathol.165, 741–751 (2004).
  • Ueda M, Ouhtit A, Bito T et al. Evidence for UV-associated activation of telomerase in human skin. Cancer Res.57, 370–374 (1997).
  • Taylor RS, Ramirez RD, Ogoshi M, Chaffins M, Piatyszek MA, Shay JW. Detection of telomerase activity in malignant and nonmalignant skin conditions. J. Invest. Dermatol.106, 759–765 (1996).
  • Attia EA, Seada LS, El-Sayed MH, El-Shiemy SM. Study of telomerase reverse transcriptase (hTERT) expression in normal, aged, and photo-aged skin. Int. J. Dermatol.49, 886–893 (2010).
  • Sharpless NE, DePinho RA. How stem cells age and why this makes us grow old. Nat. Rev. Mol. Cell Biol.8, 703–713 (2007).
  • Ambler CA, Maatta A. Epidermal stem cells: location, potential and contribution to cancer. J. Pathol.217, 206–216 (2009).
  • Castilho RM, Squarize CH, Chodosh LA, Williams BO, Gutkind JS. mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell5, 279–289 (2009).
  • Sahin E, Depinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature464, 520–528 (2010).
  • Bickenbach JR, Vormwald-Dogan V, Bachor C, Bleuel K, Schnapp G, Boukamp P. Telomerase is not an epidermal stem cell marker and is downregulated by calcium. J. Invest. Dermatol.111, 1045–1052 (1998).
  • Gunes C, Lichtsteiner S, Vasserot AP, Englert C. Expression of the hTERT gene is regulated at the level of transcriptional initiation and repressed by Mad1. Cancer Res.60, 2116–2121 (2000).
  • Kawahara TL, Michishita E, Adler AS et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span. Cell136, 62–74 (2009).
  • Tanaka K, Asamitsu K, Uranishi H et al. Protecting skin photoaging by NF-κB inhibitor. Curr. Drug Metab.11, 431–435 (2010).
  • Varani J, Fisher GJ, Kang S, Voorhees JJ. Molecular mechanisms of intrinsic skin aging and retinoid-induced repair and reversal. J. Investig. Dermatol. Symp. Proc.3, 57–60 (1998).
  • Cho S, Lowe L, Hamilton TA, Fisher GJ, Voorhees JJ, Kang S. Long-term treatment of photoaged human skin with topical retinoic acid improves epidermal cell atypia and thickens the collagen band in papillary dermis. J. Am. Acad. Dermatol.53, 769–774 (2005).
  • Fisher GJ, Datta SC, Talwar HS et al. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature379, 335–339 (1996).
  • Fisher GJ, Talwar HS, Lin J et al. Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiation that occurs subsequent to activation of mitogen-activated protein kinase pathways in human skin in vivo. J. Clin. Invest.101, 1432–1440 (1998).
  • Wang Z, Boudjelal M, Kang S, Voorhees JJ, Fisher GJ. Ultraviolet irradiation of human skin causes functional vitamin A deficiency, preventable by all-trans retinoic acid pre-treatment. Nat. Med.5, 418–422 (1999).
  • Watson RE, Arjuna Ratnayaka J, Brooke RC, Yee-Sit-Yu S, Ancian P, Griffiths CE. Retinoic acid receptor α expression and cutaneous ageing. Mech. Ageing Dev.125, 465–473 (2004).
  • Schmuth M, Watson RE, Deplewski D, Dubrac S, Zouboulis CC, Griffiths CE. Nuclear hormone receptors in human skin. Horm. Metab. Res.39, 96–105 (2007).
  • Altabas V, Cigrovski Berkovic M, Zjacic-Rotkvic V. Glitazones and skin aging: may they stop the ticking clock? Med. Hypotheses71, 459–460 (2008).
  • Kippenberger S, Loitsch S M, Grundmann-Kollmann M et al. Activators of peroxisome proliferator-activated receptors protect human skin from ultraviolet-B-light-induced inflammation. J. Invest. Dermatol.117, 1430–1436 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.