21
Views
11
CrossRef citations to date
0
Altmetric
Review

The psoriatic keratinocytes

&
Pages 473-481 | Published online: 10 Jan 2014

References

  • Ghazizadeh R, Shimizu H, Tosa M, Ghazizadeh M. Pathogenic mechanisms shared between psoriasis and cardiovascular disease. Int. J. Med. Sci. 7(5), 284–289 (2010).
  • KaplanMJ. Cardiometabolic risk in psoriasis: differential effects of biologic agents. Vasc. Health Risk Manag. 4(6), 1229–1235 (2008).
  • Sabat R, Sterry W, Philipp S, Wolk K. Three decades of psoriasis research: where has it led us? Clin. Dermatol. 25(6), 504–509 (2007).
  • Kanamori H, Tanaka M, Kawaguchi H et al. Resolution of psoriasis following allogeneic bone marrow transplantation for chronic myelogenous leukemia: case report and review of the literature. Am. J. Hematol. 71(1), 41–44 (2002).
  • Ellis CN, Gorsulowsky DC, Hamilton TA et al. Cyclosporine improves psoriasis in a double-blind study. JAMA 256(22), 3110–3116 (1986).
  • Gottlieb SL, Gilleaudeau P, Johnson R et al. Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nat. Med. 1(5), 442–447 (1995).
  • Griffiths CE, Voorhees JJ, Nickoloff BJ. γ-Interferon induces different keratinocyte cellular patterns of expression of HLA-DR and DQ and intercellular adhesion molecule-I (ICAM-I) antigens. Br. J. Dermatol. 120(1), 1–8 (1989).
  • Schlaak JF, Buslau M, Jochum W et al. T cells involved in psoriasis vulgaris belong to the Th1 subset. J. Invest. Dermatol. 102(2), 145–149 (1994).
  • Bata-Csörgö Z, Hammerberg C, Voorhees JJ, Cooper KD. Kinetics and regulation of human keratinocyte stem cell growth in short-term primary ex vivo culture. Cooperative growth factors from psoriatic lesional T lymphocytes stimulate proliferation among psoriatic uninvolved, but not normal, stem keratinocytes. J. Clin. Invest. 95(1), 317–327 (1995).
  • Bata-Csörgö Z, Hammerberg C, Voorhees JJ, Cooper KD. Intralesional T-lymphocyte activation as a mediator of psoriatic epidermal hyperplasia. J. Invest. Dermatol. 105(Suppl. 1), 89S–94S (1995).
  • Krueger JG, Walters IB, Miyazawa M et al. Successful in vivo blockade of CD25 (high-affinity interleukin 2 receptor) on T cells by administration of humanized anti-Tac antibody to patients with psoriasis. J. Am. Acad. Dermatol. 43(3), 448–458 (2000).
  • Ellis CN, Krueger GG; Alefacept Clinical Study Group. Treatment of chronic plaque psoriasis by selective targeting of memory effector T lymphocytes. N. Engl. J. Med. 345(4), 248–255 (2001).
  • Krueger GG. Selective targeting of T cell subsets: focus on alefacept – a remittive therapy for psoriasis. Expert Opin. Biol. Ther. 2(4), 431–441 (2002).
  • Wrone-Smith T, Nickoloff BJ. Dermal injection of immunocytes induces psoriasis. J. Clin. Invest. 98(8), 1878–1887 (1996).
  • Clark RA, Chong B, Mirchandani N et al. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176(7), 4431–4439 (2006).
  • Boyman O, Hefti HP, Conrad C, Nickoloff BJ, Suter M, Nestle FO. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-α. J. Exp. Med. 199(5), 731–736 (2004).
  • Sano S, Chan KS, Carbajal S et al. Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nat. Med. 11(1), 43–49 (2005).
  • Zenz R, Eferl R, Kenner L et al. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437(7057), 369–375 (2005).
  • Cai Y, Fleming C, Yan J. New insights of T cells in the pathogenesis of psoriasis. Cell. Mol. Immunol. 9(4), 302–309 (2012).
  • Eyerich S, Eyerich K, Pennino D et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest. 119(12), 3573–3585 (2009).
  • Boniface K, Bernard FX, Garcia M, Gurney AL, Lecron JC, Morel F. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J. Immunol. 174(6), 3695–3702 (2005).
  • Bos JD. Psoriasis, innate immunity, and gene pools. J. Am. Acad. Dermatol. 56(3), 468–471 (2007).
  • Pellegrini G, De Luca M, Orecchia G et al. Expression, topography, and function of integrin receptors are severely altered in keratinocytes from involved and uninvolved psoriatic skin. J. Clin. Invest. 89(6), 1783–1795 (1992).
  • Bata-Csörgö Z, Cooper KD, Ting KM, Voorhees JJ, Hammerberg C. Fibronectin and α5 integrin regulate keratinocyte cell cycling. A mechanism for increased fibronectin potentiation of T cell lymphokine-driven keratinocyte hyperproliferation in psoriasis. J. Clin. Invest. 101(7), 1509–1518 (1998).
  • Széll M, Bata-Csörgö Z, Koreck A et al. Proliferating keratinocytes are putative sources of the psoriasis susceptibility-related EDA+ (extra domain A of fibronectin) oncofetal fibronectin. J. Invest. Dermatol. 123(3), 537–546 (2004).
  • Okamura Y, Watari M, Jerud ES et al. The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem. 276(13), 10229–10233 (2001).
  • Kornblihtt AR, Pesce CG, Alonso CR et al. The fibronectin gene as a model for splicing and transcription studies. FASEB J. 10(2), 248–257 (1996).
  • Baelde HJ, Eikmans M, van Vliet AI, Bergijk EC, de Heer E, Bruijn JA. Alternatively spliced isoforms of fibronectin in immune-mediated glomerulosclerosis: the role of TGFβ and IL-4. J. Pathol. 204(3), 248–257 (2004).
  • Elder JT, Bruce AT, Gudjonsson JE et al. Molecular dissection of psoriasis: integrating genetics and biology. J. Invest. Dermatol. 130(5), 1213–1226 (2010).
  • O’Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327(5969), 1098–1102 (2010).
  • Han G, Li F, Singh TP, Wolf P, Wang XJ. The proinflammatory role of TGFβ1: a paradox? Int. J. Biol. Sci. 8(2), 228–235 (2012).
  • Sugiyama H, Gyulai R, Toichi E et al. Dysfunctional blood and target tissue CD4+CD25 high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J. Immunol. 174(1), 164–173 (2005).
  • Manabe R, Ohe N, Maeda T, Fukuda T, Sekiguchi K. Modulation of cell-adhesive activity of fibronectin by the alternatively spliced EDA segment. J. Cell Biol. 139(1), 295–307 (1997).
  • Manabe R, Oh-e N, Sekiguchi K. Alternatively spliced EDA segment regulates fibronectin-dependent cell cycle progression and mitogenic signal transduction. J. Biol. Chem. 274(9), 5919–5924 (1999).
  • Liao YF, Gotwals PJ, Koteliansky VE, Sheppard D, Van De Water L. The EIIIA segment of fibronectin is a ligand for integrins α 9β 1 and α 4β 1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J. Biol. Chem. 277(17), 14467–14474 (2002).
  • Sandig H, McDonald J, Gilmour J, Arno M, Lee TH, Cousins DJ. Fibronectin is a TH1-specific molecule in human subjects. J. Allergy Clin. Immunol. 124(3), 528–535, 535.e1 (2009).
  • Yarovinsky TO, Monick MM, Hunninghake GW. Integrin receptors are crucial for the restimulation of activated T lymphocytes. Am. J. Respir. Cell Mol. Biol. 28(5), 607–615 (2003).
  • Monick MM, Powers L, Butler N, Yarovinsky T, Hunninghake GW. Interaction of matrix with integrin receptors is required for optimal LPS-induced MAP kinase activation. Am. J. Physiol. Lung Cell Mol. Physiol. 283(2), L390–L402 (2002).
  • Conrad C, Boyman O, Tonel G et al. α1β1 Integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nat. Med. 13(7), 836–842 (2007).
  • Matzinger P, Kamala T. Tissue-based class control: the other side of tolerance. Nat. Rev. Immunol. 11(3), 221–230 (2011).
  • Albanesi C, Pastore S. Pathobiology of chronic inflammatory skin diseases: interplay between keratinocytes and immune cells as a target for anti-inflammatory drugs. Curr. Drug Metab. 11(3), 210–227 (2010).
  • McFadden JP, Baker BS, Powles AV, Fry L. Psoriasis and extra domain A fibronectin loops. Br. J. Dermatol. 163(1), 5–11 (2010).
  • Carroll JM, Romero MR, Watt FM. Suprabasal integrin expression in the epidermis of transgenic mice results in developmental defects and a phenotype resembling psoriasis. Cell 83(6), 957–968 (1995).
  • Pivarcsi A, Széll M, Kemény L, Dobozy A, Bata-Csörgö Z. Serum factors regulate the expression of the proliferation-related genes α5 integrin and keratin 1, but not keratin 10, in HaCaT keratinocytes. Arch. Dermatol. Res. 293(4), 206–213 (2001).
  • Paramio JM, Casanova ML, Segrelles C, Mittnacht S, Lane EB, Jorcano JL. Modulation of cell proliferation by cytokeratins K10 and K16. Mol. Cell. Biol. 19(4), 3086–3094 (1999).
  • Guo L, Yu QC, Fuchs E. Targeting expression of keratinocyte growth factor to keratinocytes elicits striking changes in epithelial differentiation in transgenic mice. EMBO J. 12(3), 973–986 (1993).
  • Finch PW, Murphy F, Cardinale I, Krueger JG. Altered expression of keratinocyte growth factor and its receptor in psoriasis. Am. J. Pathol. 151(6), 1619–1628 (1997).
  • Krueger GG, Jorgensen CM. Experimental models for psoriasis. J. Invest. Dermatol. 95(Suppl. 5), 56S–58S (1990).
  • Andreadis ST, Hamoen KE, Yarmush ML, Morgan JR. Keratinocyte growth factor induces hyperproliferation and delays differentiation in a skin equivalent model system. FASEB J. 15(6), 898–906 (2001).
  • Koria P, Andreadis ST. KGF promotes integrin α5 expression through CCAAT/enhancer-binding protein-β. Am. J. Physiol., Cell Physiol. 293(3), C1020–C1031 (2007).
  • Hambalko S, Belso N, Szell M, Kemeny L, Bata-Csörgö Z. Psoriatic keratinocytes differ in α 5 integrin response from healthy keratinocytes. J. Invest. Dermatol. 129S54 (2009).
  • Nagy N, Bata-Csörgö Z, Kopasz N et al. The expression of keratinocyte growth factor receptor (FGFR2-IIIb) correlates with the high proliferative rate of HaCaT keratinocytes. Exp. Dermatol. 15(8), 596–605 (2006).
  • Kovacs D, Falchi M, Cardinali G et al. Immunohistochemical analysis of keratinocyte growth factor and fibroblast growth factor 10 expression in psoriasis. Exp. Dermatol. 14(2), 130–137 (2005).
  • Hambalko S, Bebes A, Belso N et al. KGF and KGFR expression and its changes induced by slight injury differ in normal appearing (uninvolved) skin of psoriatic patients compared to healthy skin. J. Invest. Dermatol. 130S87(2010).
  • Konstantinova NV, Duong DM, Remenyik E, Hazarika P, Chuang A, Duvic M. Interleukin-8 is induced in skin equivalents and is highest in those derived from psoriatic fibroblasts. J. Invest. Dermatol. 107(4), 615–621 (1996).
  • Xu N, Brodin P, Wei T et al. MiR-125b, a microRNA downregulated in psoriasis, modulates keratinocyte proliferation by targeting FGFR2. J. Invest. Dermatol. 131(7), 1521–1529 (2011).
  • Krek A, Grün D, Poy MN et al. Combinatorial microRNA target predictions. Nat. Genet. 37(5), 495–500 (2005).
  • Bill HM, Knudsen B, Moores SL et al. Epidermal growth factor receptor-dependent regulation of integrin-mediated signaling and cell cycle entry in epithelial cells. Mol. Cell. Biol. 24(19), 8586–8599 (2004).
  • Pastore S, Mascia F, Mariani V, Girolomoni G. The epidermal growth factor receptor system in skin repair and inflammation. J. Invest. Dermatol. 128(6), 1365–1374 (2008).
  • Roupé KM, Nybo M, Sjöbring U, Alberius P, Schmidtchen A, Sørensen OE. Injury is a major inducer of epidermal innate immune responses during wound healing. J. Invest. Dermatol. 130(4), 1167–1177 (2010).
  • Johnston A, Gudjonsson JE, Aphale A, Guzman AM, Stoll SW, Elder JT. EGFR and IL-1 signaling synergistically promote keratinocyte antimicrobial defenses in a differentiation-dependent manner. J. Invest. Dermatol. 131(2), 329–337 (2011).
  • Belsõ N, Széll M, Pivarcsi A et al. Differential expression of D-type cyclins in HaCaT keratinocytes and in psoriasis. J. Invest. Dermatol. 128(3), 634–642 (2008).
  • Xu X, Lyle S, Liu Y, Solky B, Cotsarelis G. Differential expression of cyclin D1 in the human hair follicle. Am. J. Pathol. 163(3), 969–978 (2003).
  • Bata-Csörgö Z, Hammerberg C, Voorhees JJ, Cooper KD. Flow cytometric identification of proliferative subpopulations within normal human epidermis and the localization of the primary hyperproliferative population in psoriasis. J. Exp. Med. 178(4), 1271–1281 (1993).
  • Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3 β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12(22), 3499–3511 (1998).
  • Chung JH, Ostrowski MC, Romigh T, Minaguchi T, Waite KA, Eng C. The ERK1/2 pathway modulates nuclear PTEN-mediated cell cycle arrest by cyclin D1 transcriptional regulation. Hum. Mol. Genet. 15(17), 2553–2559 (2006).
  • Okabe H, Lee SH, Phuchareon J, Albertson DG, McCormick F, Tetsu O. A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation. PLoS ONE 1, e128 (2006).
  • Yang W, Zhang Y, Li Y, Wu Z, Zhu D. Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/AKT/GSK-3 β pathway and is antagonized by insulin-like growth factor 1. J. Biol. Chem. 282(6), 3799–3808 (2007).
  • Yamamoto H, Ochiya T, Takeshita F et al. Enhanced skin carcinogenesis in cyclin D1-conditional transgenic mice: cyclin D1 alters keratinocyte response to calcium-induced terminal differentiation. Cancer Res. 62(6), 1641–1647 (2002).
  • Capon F, Bijlmakers MJ, Wolf N et al. Identification of ZNF313/RNF114 as a novel psoriasis susceptibility gene. Hum. Mol. Genet. 17(13), 1938–1945 (2008).
  • Kanie T, Onoyama I, Matsumoto A et al. Genetic re-evaluation of the role of F-box proteins in cyclin D1 degradation. Mol. Cell. Biol. 32(3), 590–605 (2012).
  • Vereecke L, Beyaert R, van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 30(8), 383–391 (2009).
  • Zenz R, Wagner EF. Jun signalling in the epidermis: from developmental defects to psoriasis and skin tumors. Int. J. Biochem. Cell Biol. 38(7), 1043–1049 (2006).
  • Smola H, Thiekötter G, Fusenig NE. Mutual induction of growth factor gene expression by epidermal-dermal cell interaction. J. Cell Biol. 122(2), 417–429 (1993).
  • Maas-Szabowski N, Shimotoyodome A, Fusenig NE. Keratinocyte growth regulation in fibroblast cocultures via a double paracrine mechanism. J. Cell. Sci. 112(Pt. 12), 1843–1853 (1999).
  • Szabowski A, Maas-Szabowski N, Andrecht S et al. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal–epidermal interaction in skin. Cell 103(5), 745–755 (2000).
  • Jesus AA, Osman M, Silva CA et al. A novel mutation of IL1RN in the deficiency of interleukin-1 receptor antagonist syndrome: description of two unrelated cases from Brazil. Arthritis Rheum. 63(12), 4007–4017 (2011).
  • Onoufriadis A, Simpson MA, Pink AE et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am. J. Hum. Genet. 89(3), 432–437 (2011).
  • Muhr P, Zeitvogel J, Heitland I, Werfel T, Wittmann M. Expression of interleukin (IL)-1 family members upon stimulation with IL-17 differs in keratinocytes derived from patients with psoriasis and healthy donors. Br. J. Dermatol. 165(1), 189–193 (2011).
  • Segre JA. Epidermal barrier formation and recovery in skin disorders. J. Clin. Invest. 116(5), 1150–1158 (2006).
  • Djalilian AR, McGaughey D, Patel S et al. Connexin 26 regulates epidermal barrier and wound remodeling and promotes psoriasiform response. J. Clin. Invest. 116(5), 1243–1253 (2006).
  • Madonna S, Scarponi C, Sestito R, Pallotta S, Cavani A, Albanesi C. The IFN-γ-dependent suppressor of cytokine signaling 1 promoter activity is positively regulated by IFN regulatory factor-1 and Sp1 but repressed by growth factor independence-1b and Krüppel-like factor-4, and it is dysregulated in psoriatic keratinocytes. J. Immunol. 185(4), 2467–2481 (2010).
  • Schönefuss A, Wendt W, Schattling B et al. Upregulation of cathepsin S in psoriatic keratinocytes. Exp. Dermatol. 19(8), e80–e88 (2010).
  • McKenzie RC, Sabin E. Aberrant signalling and transcription factor activation as an explanation for the defective growth control and differentiation of keratinocytes in psoriasis: a hypothesis. Exp. Dermatol. 12(4), 337–345 (2003).
  • Wood LC, Feingold KR, Sequeira-Martin SM, Elias PM, Grunfeld C. Barrier function coordinately regulates epidermal IL-1 and IL-1 receptor antagonist mRNA levels. Exp. Dermatol. 3(2), 56–60 (1994).
  • Wood LC, Jackson SM, Elias PM, Grunfeld C, Feingold KR. Cutaneous barrier perturbation stimulates cytokine production in the epidermis of mice. J. Clin. Invest. 90(2), 482–487 (1992).
  • Nickoloff BJ, Naidu Y. Perturbation of epidermal barrier function correlates with initiation of cytokine cascade in human skin. J. Am. Acad. Dermatol. 30(4), 535–546 (1994).
  • de Cid R, Riveira-Munoz E, Zeeuwen PL et al. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nat. Genet. 41(2), 211–215 (2009).
  • Zhang XJ, Huang W, Yang S et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat. Genet. 41(2), 205–210 (2009).
  • Hsu S, Dickinson D, Borke J et al. Green tea polyphenol induces caspase 14 in epidermal keratinocytes via MAPK pathways and reduces psoriasiform lesions in the flaky skin mouse model. Exp. Dermatol. 16(8), 678–684 (2007).
  • Demerjian M, Hachem JP, Tschachler E et al. Acute modulations in permeability barrier function regulate epidermal cornification: role of caspase-14 and the protease-activated receptor type 2. Am. J. Pathol. 172(1), 86–97 (2008).
  • Strange A, Capon F, Spencer CC et al. Genetic Analysis of Psoriasis Consortium & the Wellcome Trust Case Control Consortium 2. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat. Genet. 42(11), 985–990 (2010).
  • Swindell WR, Johnston A, Carbajal S et al. Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis. PLoS ONE 6(4), e18266 (2011).
  • Margadant C, Sonnenberg A. Integrin-TGF-β cross talk in fibrosis, cancer and wound healing. EMBO Rep. 11(2), 97–105 (2010).
  • Ffrench-Constant C, Van de Water L, Dvorak HF, Hynes RO. Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat. J. Cell Biol. 109(2), 903–914 (1989).
  • Hu Y, Liang D, Li X et al. The role of interleukin-1 in wound biology. Part II: In vivo and human translational studies. Anesth. Analg. 111(6), 1534–1542 (2010).
  • Roupe KM, Nybo M, Sjobring U et al. Injury is a major inducer of epidermal innate immune responses during wound healing. J. Invest. Dermatol. 130(4), 1167–1177 (2010).
  • Weatherhead SC, Farr PM, Jamieson D et al. Keratinocyte apoptosis in epidermal remodeling and clearance of psoriasis induced by UV radiation. J. Invest. Dermatol. 131(9), 1916–1926 (2011).
  • Hartman M, Prins M, Swinkels OQ et al. Cost-effectiveness analysis of a psoriasis care instruction programme with dithranol compared with UVB phototherapy and inpatient dithranol treatment. Br. J. Dermatol. 147(3), 538–544 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.