5
Views
0
CrossRef citations to date
0
Altmetric
Special Report

What’s new in Birt–Hogg–Dubé syndrome?

, , , &
Pages 521-528 | Published online: 10 Jan 2014

References

  • Houweling AC, Gijezen LM, Jonker MA et al. Renal cancer and pneumothorax risk in Birt–Hogg–Dubé syndrome: an analysis of 115 FLCN mutation carriers from 35 BHD families. Br. J. Cancer 105(12), 1912–1919 (2011).
  • Menko FH, van Steensel MA, Giraud S et al.; European BHD Consortium. Birt–Hogg–Dubé syndrome: diagnosis and management. Lancet Oncol. 10(12), 1199–1206 (2009).
  • Kluger N, Giraud S, Coupier I et al. Birt–Hogg–Dubé syndrome: clinical and genetic studies of 10 French families. Br. J. Dermatol. 162(3), 527–537 (2010).
  • Schmidt LS, Nickerson ML, Warren MB et al. Germline BHD-mutation spectrum and phenotype analysis of a large cohort of families with Birt–Hogg–Dubé syndrome. Am. J. Hum. Genet. 76(6), 1023–1033 (2005).
  • Orlova KA, Crino PB. The tuberous sclerosis complex. Ann. NY Acad. Sci. 1184, 87–105 (2010).
  • Bissler JJ, McCormack FX, Young LRet al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med. 358(2), 140–151 (2008).
  • Okimoto K, Sakurai J, Kobayashi T et al. A germ-line insertion in the Birt–Hogg–Dubé (BHD) gene gives rise to the Nihon rat model of inherited renal cancer. Proc. Natl Acad. Sci. USA 101(7), 2023–2027 (2004).
  • Hasumi Y, Baba M, Ajima R et al. Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2. Proc. Natl Acad. Sci. USA 106(44), 18722–18727 (2009).
  • Baba M, Furihata M, Hong SB et al. Kidney-targeted Birt–Hogg–Dubé gene inactivation in a mouse model: Erk1/2 and Akt-mTOR activation, cell hyperproliferation, and polycystic kidneys. J. Natl Cancer Inst. 100(2), 140–154 (2008).
  • Chen J, Futami K, Petillo D et al. Deficiency of FLCN in mouse kidney led to development of polycystic kidneys and renal neoplasia. PLoS ONE 3(10), e3581 (2008).
  • Baba M, Hong SB, Sharma N et al. Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc. Natl Acad. Sci. USA 103(42), 15552–15557 (2006).
  • Hudon V, Sabourin S, Dydensborg AB et al. Renal tumour suppressor function of the Birt–Hogg–Dubé syndrome gene product folliculin. J. Med. Genet. 47(3), 182–189 (2010).
  • Hartman TR, Nicolas E, Klein-Szanto A et al. The role of the Birt–Hogg–Dubé protein in mTOR activation and renal tumorigenesis. Oncogene 28(13), 1594–1604 (2009).
  • van Slegtenhorst M, Khabibullin D, Hartman TR, Nicolas E, Kruger WD, Henske EP. The Birt–Hogg–Dubé and tuberous sclerosis complex homologs have opposing roles in amino acid homeostasis in Schizosaccharomyces pombe. J. Biol. Chem. 282(34), 24583–24590 (2007).
  • Claessens T, Weppler SA, van Geel M et al. Neuroendocrine carcinoma in a patient with Birt–Hogg–Dubé syndrome. Nat. Rev. Urol. 7(10), 583–587 (2010).
  • Preston RS, Philp A, Claessens T et al. Absence of the Birt–Hogg–Dubé gene product is associated with increased hypoxia-inducible factor transcriptional activity and a loss of metabolic flexibility. Oncogene 30(10), 1159–1173 (2011).
  • Klomp JA, Petillo D, Niemi NM et al. Birt–Hogg–Dubé renal tumors are genetically distinct from other renal neoplasias and are associated with up-regulation of mitochondrial gene expression. BMC Med. Genomics 3, 59 (2010).
  • Krishnan B, Truong LD. Renal epithelial neoplasms: the diagnostic implications of electron microscopic study in 55 cases. Hum. Pathol. 33(1), 68–79 (2002).
  • Hong SB, Oh H, Valera VA et al. Tumor suppressor FLCN inhibits tumorigenesis of a FLCN-null renal cancer cell line and regulates expression of key molecules in TGF-β signaling. Mol. Cancer 23(9), 160 (2010).
  • Yang Y, Padilla-Nash HM, Vira MA et al. The UOK 257 cell line: a novel model for studies of the human Birt–Hogg–Dubé gene pathway. Cancer Genet. Cytogenet. 180(2), 100–109 (2008).
  • Cash TP, Gruber JJ, Hartman TR, Henske EP, Simon MC. Loss of the Birt–Hogg–Dubé tumor suppressor results in apoptotic resistance due to aberrant TGFβ-mediated transcription. Oncogene 30(22), 2534–2546 (2011).
  • Grinberg AV, Kerppola T. Both Max and TFE3 cooperate with Smad proteins to bind the plasminogen activator inhibitor-1 promoter, but they have opposite effects on transcriptional activity. J. Biol. Chem. 278(13), 11227–11236 (2003).
  • Hong SB, Oh H, Valera VA, Baba M, Schmidt LS, Linehan WM. Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization. PLoS ONE 5(12), e15793 (2010).
  • Singh SR, Zhen W, Zheng Z et al. The Drosophila homolog of the human tumor suppressor gene BHD interacts with the JAK-STAT and Dpp signaling pathways in regulating male germline stem cell maintenance. Oncogene 25(44), 5933–5941 (2006).
  • Cardenas-Rodriguez M, Badano JL. Ciliary biology: understanding the cellular and genetic basis of human ciliopathies. Am. J. Med. Genet. C. Semin. Med. Genet. 151C(4), 263–280 (2009).
  • Jones C, Chen P. Primary cilia in planar cell polarity regulation of the inner ear. Curr. Top. Dev. Biol. 85, 197–224 (2008).
  • McNeill H. Planar cell polarity and the kidney. J. Am. Soc. Nephrol. 20(10), 2104–2111 (2009).
  • Waters AM, Beales PL. Ciliopathies: an expanding disease spectrum. Pediatr. Nephrol. 26(7), 1039–1056 (2011).
  • Gong Y, Mo C, Fraser SE. Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature 430(7000), 689–693 (2004).
  • Nookala RK, Langemeyer L, Pacitto A et al. Crystal structure of folliculin reveals a hidDENN function in genetically inherited renal cancer. Open Biol. 2(8), 120071 (2012).
  • Das A, Guo W. Rabs and the exocyst in ciliogenesis, tubulogenesis and beyond. Trends Cell Biol. 21(7), 383–386 (2011).
  • Chesneau L, Dambournet D, Machicoane M et al. An ARF6/Rab35 GTPase cascade for endocytic recycling and successful cytokinesis. Curr. Biol. 22(2), 147–153 (2012).
  • Omori Y, Zhao C, Saras A et al. Elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat. Cell Biol. 10(4), 437–444 (2008).
  • Korolchuk VI, Saiki S, Lichtenberg M et al. Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 13(4), 453–460 (2011).
  • van Steensel MA, Verstraeten VL, Frank J et al. Novel mutations in the BHD gene and absence of loss of heterozygosity in fibrofolliculomas of Birt–Hogg–Dubé patients. J. Invest. Dermatol. 127(3), 588–593 (2007).
  • Misago N, Kimura T, Narisawa Y. Fibrofolliculoma/trichodiscoma and fibrous papule (perifollicular fibroma/angiofibroma): a revaluation of the histopathological and immunohistochemical features. J. Cutan. Pathol. 36(9), 943–951 (2009).
  • Mentzel T, Kutzner H, Requena L, Hartmann A. [Skin tumors as marker lesions for tumor syndromes]. Pathologe 31(6), 489–496 (2010).
  • Hofbauer GF, Marcollo-Pini A, Corsenca A et al. The mTOR inhibitor rapamycin significantly improves facial angiofibroma lesions in a patient with tuberous sclerosis. Br. J. Dermatol. 159(2), 473–475 (2008).
  • Horsley V, O’Carroll D, Tooze R et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126(3), 597–609 (2006).
  • Li S, Thangapazham RL, Wang JA et al. Human TSC2-null fibroblast-like cells induce hair follicle neogenesis and hamartoma morphogenesis. Nat. Commun. 2, 235 (2011).
  • Farrant PB, Emerson R. Letter: hyfrecation and curettage as a treatment for fibrofolliculomas in Birt–Hogg–Dubé syndrome. Dermatol. Surg. 33(10), 1287–1288 (2007).
  • Rohatgi R, Milenkovic L, Scott MP. Patched1 regulates hedgehog signaling at the primary cilium. Science 317(5836), 372–376 (2007).
  • Simons M, Gloy J, Ganner A et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet. 37(5), 537–543 (2005).
  • Katoh M. WNT signaling in stem cell biology and regenerative medicine. Curr. Drug Targets 9(7), 565–570 (2008).
  • Lauth M, Toftgård R. The Hedgehog pathway as a drug target in cancer therapy. Curr. Opin. Investig. Drugs 8(6), 457–461 (2007).
  • Linehan WM, Srinivasan R, Schmidt LS. The genetic basis of kidney cancer: a metabolic disease. Nat. Rev. Urol. 7(5), 277–285 (2010).
  • Lingaas F, Comstock KE, Kirkness EF et al. A mutation in the canine BHD gene is associated with hereditary multifocal renal cystadenocarcinoma and nodular dermatofibrosis in the German Shepherd dog. Hum. Mol. Genet. 12(23), 3043–3053 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.