52
Views
1
CrossRef citations to date
0
Altmetric
Special Report

Association studies of the SAS-ZFAT, IL-23R, IFIH1 and FOXP3 genes in autoimmune thyroid disease

&
Pages 325-331 | Published online: 10 Jan 2014

References

  • Tomer Y, Davies TF. Searching for the autoimmune thyroid disease susceptibility genes: from gene mapping to gene function. Endocr. Rev.24, 694–717 (2003).
  • Tomer Y, Davies TF. Infection, thyroid disease and autoimmunity. Endocr. Rev.14, 107–120 (1993).
  • Brix TH, Hansen PS, Kyvik KO, Hegedus L. Cigarette smoking and risk of clinically overt thyroid disease: a population-based twin case–control study. Arch. Intern. Med.160, 661–666 (2000).
  • Stenszky V, Kozma L, Balazs C, Rochlitz S, Bear JC, Farid NR. The genetics of Grave’s disease: HLA and disease susceptibility. J. Clin. Endocrinol. Metab.61, 735–740 (1985).
  • Mangklabruks A, Cox N, DeGroot LJ. Genetic factors in autoimmune thyroid disease analyzed by restriction fragment length polymorphisms of candidate genes. J. Clin. Endocrinol. Metab.73, 236–244 (1991).
  • Heward JM, Allahabadia A, Daykin J et al. Linkage disequilibrium between the human leukocyte antigen class II region of the major histocompatibility complex and Graves’ disease: replication using a population case control and family-based study. J. Clin. Endocrinol. Metab.83, 3394–3397 (1998).
  • Ban Y, Tomer Y. The contribution of immune regulatory and thyroid specific genes to the etiology of Graves’ and Hashimoto’s diseases. Autoimmunity36, 367–379 (2003).
  • Ban Y, Davies TF, Greenberg DA et al. Arginine at position 74 of the HLA-DRb1 chain is associated with Graves’ disease. Genes Immun.5, 203–208 (2004).
  • Simmonds MJ, Howson JM, Heward JM et al. Regression mapping of association between the human leukocyte antigen region and graves disease. Am. J. Hum. Genet.76, 157–163 (2005).
  • Tomer Y. Unraveling the genetic susceptibility to autoimmune thyroid diseases: CTLA-4 takes the stage. Thyroid11, 167–169 (2001).
  • Simmonds MJ, Gough SC. Unravelling the genetic complexity of autoimmune thyroid disease: HLA, CTLA-4 and beyond. Clin. Exp. Immunol.136, 1–10 (2004).
  • Tomer Y, Concepcion E, Greenberg DA. A C/T single nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid12, 1129–1135 (2002).
  • Tomer Y, Greenberg DA, Concepcion E, Ban Y, Davies TF. Thyroglobulin is a thyroid specific gene for the familial autoimmune thyroid diseases. J. Clin. Endocrinol. Metab.87, 404–407 (2002).
  • Collins JE, Heward JM, Carr-Smith J, Daykin J, Franklyn JA, Gough SC. Association of a rare thyroglobulin gene microsatellite variant with autoimmune thyroid disease. J. Clin. Endocrinol. Metab.88, 5039–5042 (2003).
  • Ban Y, Tozaki T, Taniyama M, Tomita M, Ban Y. Association of a thyroglobulin gene polymorphism with Hashimoto's thyroiditis in the Japanese population. Clin. Endocrinol. (Oxf.)61, 263–268 (2004).
  • Dechairo BM, Zabaneh D, Collins J et al. Association of the TSHR gene with Graves’ disease: the first disease specific locus. Eur. J. Hum. Genet.13, 1223–1230 (2005).
  • Hiratani H, Bowden DW, Ikegami S et al. Multiple SNPs in intron 7 of thyrotropin receptor are associated with Graves’ disease. J. Clin. Endocrinol. Metab.90, 2898–2903 (2005).
  • Kochi Y, Yamada R, Suzuki A et al. A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat. Genet.37, 478–485 (2005).
  • Simmonds MJ, Howson JM, Heward JM et al. A novel and major association of HLA-C in Graves’ disease that eclipses the classical HLA-DRB1 effect. Hum. Mol. Genet.16, 2149–2153 (2007).
  • Brand OJ, Lowe CE, Heward JM et al. Association of the interleukin-2 receptor α (IL-2Rα)/CD25 gene region with Graves’ disease using a multilocus test and tag SNPs. Clin. Endocrinol. (Oxf.)66, 508–512 (2007).
  • Smyth D, Cooper JD, Collins JE et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with Type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes53, 3020–3023 (2004).
  • Ichimura M, Kaku H, Fukutani T et al. Associations of protein tyrosine phosphatase nonreceptor 22 (PTPN22) gene polymorphisms with susceptibility to Graves’ disease in a Japanese population. Thyroid18, 625–630 (2008).
  • Shirasawa S, Harada H, Furugaki K et al. SNPs in the promoter of a B cell-specific antisense transcript, SAS-ZFAT, determine susceptibility to autoimmune thyroid disease. Hum. Mol. Genet.13, 2221–2231 (2004).
  • Sakai K, Shirasawa S, Ishikawa N et al. Identification of susceptibility loci for autoimmune thyroid disease to 5q31–q33 and Hashimoto’s thyroiditis to 8q23–q24 by multipoint affected sib-pair linkage analysis in Japanese. Hum. Mol. Genet.10, 1379–1386 (2001).
  • Lankford CS, Frucht DM. A unique role for IL-23 in promoting cellular immunity. J. Leukoc. Biol.73, 49–56 (2003).
  • McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23–IL-17 immune pathway. Trends Immunol.27, 17–23 (2006).
  • Parham C, Chirica M, Timans J et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J. Immunol.168, 5699–5708 (2002).
  • Holz A, Bot A, Coon B, Wolfe T, Grusby MJ, von Herrath MG. Disruption of the STAT4 signaling pathway protects from autoimmune diabetes while retaining antiviral immunecompetence. J. Immunol.163, 5374–5382 (1999).
  • Finnegan A, Grusby MJ, Kaplan CD et al. IL-4 and IL-12 regulate proteoglycan-induced arthritis through STAT-dependent mechanisms. J. Immunol.169, 3345–3352 (2002).
  • Chitnis T, Najafian N, Benou C et al. Effect of targeted disruption of STAT4 and STAT6 on the induction of experimental autoimmune encephalomyelitis. J. Clin. Invest.108, 739–747 (2001).
  • Afanasyeva M, Wang Y, Kaya Z et al. Interleukin-12 receptor/STAT4 signaling is required for the development of autoimmune myocarditis in mice by an interferon-γ-independent pathway. Circulation104, 3145–3151 (2001).
  • Wang W, Ostlie NS, Conti-Fine BM, Milani M. The susceptibility to experimental myasthenia gravis of STAT6-/- and STAT4-/- BALB/c mice suggests a pathogenic role of Th1 cells. J. Immunol.172, 97–103 (2004).
  • Watford WT, Hissong BD, Bream JH, Kanno Y, Muul L, O’Shea JJ. Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol. Rev.202, 139–156 (2004).
  • Duerr RH, Taylor KD, Brant SR et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314, 1461–1463 (2006).
  • Farago B, Magyari L, Safrany E et al. Functional variants of interleukin-23 receptor gene confer risk for rheumatoid arthritis but not for systemic sclerosis. Ann. Rheum. Dis.67, 248–250 (2008).
  • Cargill M, Schrodi SJ, Chang M et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet.80, 273–280 (2007).
  • Huber AK, Jacobson EM, Jazdzewski K, Concepcion ES, Tomer Y. IL-23R is a major susceptibility gene for Graves’ ophthalmopathy: the IL-23/Th17 axis extends to thyroid autoimmunity. J. Clin. Endocrinol. Metab.93, 1077–1081 (2008).
  • Ban Y, Tozaki T, Taniyama M et al. Association studies of the IL-23R gene in autoimmune thyroid disease in the Japanese population. Autoimmunity42, 126–130 (2009).
  • Yoneyama M, Kikuchi M, Matsumoto K et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol.175, 2851–2858 (2005).
  • Meylan E, Tschopp J, Karin M. Intracellular pattern recognition receptors in the host response. Nature442, 39–44 (2006).
  • Lonnrot M, Korpela K, Knip M et al. Enterovirus infection as a risk factor for β-cell autoimmunity in a prospectively observed birth cohort: the Finnish Diabetes Prediction and Prevention Study. Diabetes49, 1314–1318 (2000).
  • Smyth DJ, Cooper JD, Bailey R et al. A genome-wide association study of nonsynonymous SNPs identifies a Type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat. Genet.38, 617–619 (2006).
  • Weetman AP, McGregor AM. Autoimmune thyroid disease: further developments in our understanding. Endocr. Rev.15, 788–830 (1994).
  • Wick G, Grubeck-Loebenstein B, Trieb K, Kalischnig G, Aguzzi A. Human foamy virus antigens in thyroid tissue of Graves’ disease patients. Int. Arch. Allergy Immunol.99, 153–156 (1992).
  • Matsuda T, Tomita M, Uchihara JN et al. Human T cell leukemia virus type I-infected patients with Hashimoto’s thyroiditis and Graves’ disease. J. Clin. Endocrinol. Metab.90, 5704–5710 (2005).
  • Mandac JC, Chaudhry S, Sherman KE, Tomer Y. The clinical and physiological spectrum of interferon-α induced thyroiditis: toward a new classification. Hepatology43, 661–672 (2006).
  • Sutherland A, Davies J, Owen CJ et al. Genomic polymorphism at the interferon-induced helicase (IFIH1) locus contributes to Graves’ disease susceptibility. J. Clin. Endocrinol. Metab.92, 3338–3341 (2007).
  • Zhao ZF, Cui B, Chen HY et al. The A946T polymorphism in the interferon induced helicase gene does not confer susceptibility to Graves’ disease in Chinese population. Endocrine32, 143–147 (2007).
  • Maloy KJ, Powrie F. Regulatory T cells in the control of immune pathology. Nat. Immunol.2, 816–822 (2001).
  • Sakaguchi S, Sakaguchi N, Shimizu J et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev.182, 18–32 (2001).
  • Brunkow ME, Jeffery EW, Hjerrild KA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet.27, 68–73 (2001).
  • Walker R, Kasprowicz DJ, Gersuk VH et al. Induction of FOXP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J. Clin. Invest.112, 1437–1443 (2003).
  • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol.4, 330–336 (2003).
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science299, 1057–1061 (2003).
  • Khattri R, Cox T, Yasayko S-A, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol.4, 337–342 (2003).
  • Walker LSK, Chodos A, Eggena M, Dooms H, Abbas AK. Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo. J. Exp. Med.198, 249–258 (2003).
  • Chatila TA, Blaeser F, Ho N et al.JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest.106, R75–R81 (2000).
  • Bennett CL, Christie J, Ramsdell F et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet.27, 20–21 (2001).
  • Wildin RS, Ramsdell F, Peake J et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet.27, 18–20 (2001).
  • Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J. Med. Genet.39, 537–545 (2002).
  • Bennett CL, Brunkow M, Ramsdell F et al. A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA–>AAUGAA) leads to the IPEX syndrome. Immunogenetics53, 435–439 (2001).
  • Kobayashi I, Shiari R, Yamada M et al. Novel mutations of FOXP3 in two Japanese patients with immune dysregulation, polyendocrinopathy, enteropathy, X linked syndrome (IPEX). J. Med. Genet.38, 874–876 (2001).
  • Gambineri E, Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr. Opin. Rheumatol.15, 430–435 (2003).
  • Owen CJ, Jennings CE, Imrie H et al. Mutational analysis of the FOXP3 gene and evidence for genetic heterogeneity in the immunodysregulation, polyendocrinopathy, enteropathy syndrome. J. Clin. Endocrinol. Metab.88, 6034–6039 (2003).
  • Kukreja A, Cost G, Marker J et al. Multiple immuno-regulatory defects in type-1 diabetes. J. Clin. Invest.109, 131–140 (2002).
  • Kriegel MA, Lohmann T, Gabler C, Blank N, Kalden JR, Lorenz H-M. Defective suppressor function of human CD4+ CD25+ regulatory T cells in autoimmune polyglandular syndrome type II. J. Exp. Med.199, 1285–1291 (2004).
  • Huan J, Culbertson N, Spencer L et al. Decreased FOXP3 levels in multiple sclerosis patients. J. Neurosci. Res.81, 45–52 (2005).
  • Tomer Y, Barbesino G, Greenberg DA, Concepcion ES, Davies TF. Mapping the major susceptibility loci for familial Graves’ and Hashimoto’s diseases: evidence for genetic heterogeneity and gene interactions. J. Clin. Endocrinol. Metab.84, 4656–4664 (1999).
  • Taylor JC, Gough SC, Hunt PJ et al. A genome-wide screen in 1119 relative pairs with autoimmune thyroid disease. J. Clin. Endocrinol. Metab.91, 646–653 (2005).
  • Imrie H, Vaidya B, Perros P et al. Evidence for a Graves’ disease susceptibility locus at chromosome Xp11 in a United Kingdom population. J. Clin. Endocrinol. Metab.86, 626–630 (2001).
  • Tomer Y, Ban Y, Concepcion E et al. Common and unique susceptibility loci in Graves and Hashimoto diseases: results of whole-genome screening in a data set of 102 multiplex families. Am. J. Hum. Genet.73, 736–747 (2003).
  • Ebers GC, Kukay K, Bulman DE et al. A full genome search in multiple sclerosis. Nat. Genet.13, 472–476 (1996).
  • Cornélis F, Fauré S, Martinez M et al.ECRAF. New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. Proc. Natl Acad. Sci. USA95, 10746–10750 (1998).
  • Cucca F, Goy JV, Kawaguchi Y et al. A male–female bias in Type 1 diabetes and linkage to chromosome Xp in MHC HLA-DR3-positive patients. Nat. Genet.19, 301–302 (1998).
  • Bassuny WM, Ihara K, Sasaki Y et al. A functional polymorphism in the promoter/enhancer region of the FOXP3/Scurfin gene associated with Type 1 diabetes. Immunogenetics55, 149–156 (2003).
  • Zavattari P, Deidda E, Pitzalis M et al. No association between variation of the FOXP3 gene and common Type 1 diabetes in the Sardinian population. Diabetes53, 1911–1914 (2004).
  • Owen CJ, Eden JA, Jennings CE, Wilson V, Cheetham TD, Pearce SH. Genetic association studies of the FOXP3 gene in Graves’ disease and autoimmune Addison’s disease in the United Kingdom population. J. Mol. Endocrinol.37, 97–104 (2006).
  • Ban Y, Tozaki T, Tobe T et al. The regulatory T cell gene FOXP3 and genetic susceptibility to thyroid autoimmunity: an association analysis in Caucasian and Japanese cohorts. J. Autoimmun.28, 201–207 (2007).
  • Wucherpfennig KW. MHC-linked susceptibility to Type 1 diabetes: a structural perspective. Ann. NY Acad. Sci.1005, 119–127 (2003).
  • Huber A, Menconi F, Corathers S, Jacobson EM, Tomer Y. Joint genetic susceptibility to Type 1 diabetes and autoimmune thyroiditis: from epidemiology to mechanisms. Endocr. Rev.29, 697–725 (2008).
  • Golden B, Levin L, Ban Y, Concepcion E, Greenberg DA, Tomer Y. Genetic analysis of families with autoimmune diabetes and thyroiditis: evidence for common and unique genes. J. Clin. Endocrinol. Metab.90, 4904–4911 (2005).
  • Ikegami H, Awata T, Kawasaki E et al. The association of CTLA4 polymorphism with Type 1 diabetes is concentrated in patients complicated with autoimmune thyroid disease: a multicenter collaborative study in Japan. J. Clin. Endocrinol. Metab.91, 1087–1092 (2006).
  • Howson JM, Dunger DB, Nutland S, Stevens H, Wicker LS, Todd JA. A Type 1 diabetes subgroup with a female bias is characterised by failure in tolerance to thyroid peroxidase at an early age and a strong association with the cytotoxic T-lymphocyte-associated antigen-4 gene. Diabetologia50, 741–746 (2007).
  • Dultz G, Matheis N, Dittmar M, Rohrig B, Bender K, Kahaly G. The protein tyrosine phosphatase non-receptor type 22 C1858T polymorphism is a joint susceptibility locus for immunothyroiditis and autoimmune diabetes. Thyroid19, 143–148 (2009).
  • Van Limbergen J, Kalima P, Taheri S, Beattie TF. Streptococcus A in paediatric accident and emergency: are rapid streptococcal tests and clinical examination of any help? Inflamm. Bowel Dis.13, 338–355 (2006).
  • Devlin SM, Yang H, Ippoliti A et al.NOD2 variants and antibody response to microbial antigens in Crohn’s disease patients and their unaffected relatives. Gastroenterology132, 576–586 (2007).
  • Sawai Y, DeGroot LJ. Binding of human thyrotropin receptor peptides to a Graves’ disease-predisposing human leukocyte antigen class II molecule. J. Clin. Endocrinol. Metab.85, 1176–1179 (2000).
  • Ueda H, Howson JM, Esposito L et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature423, 506–511 (2003).
  • Ban Y, Davies TF, Greenberg DA et al. Analysis of the CTLA-4, CD28, and inducible costimulator (ICOS) genes in autoimmune thyroid disease. Genes Immun.4, 586–593 (2003).
  • Kouki T, Sawai Y, Gardine CA, Fisfalen ME, Alegre ML, DeGroot LJ. CTLA-4 gene polymorphism at position 49 in exon 1 reduces the inhibitory function of CTLA-4 and contributes to the pathogenesis of Graves’ disease. J. Immunol.165, 6606–6611 (2000).
  • Xu Y, Graves P, Tomer Y, Davies T. CTLA-4 and autoimmune thyroid disease: lack of influence of the A49G signal peptide polymorphism on functional recombinant human CTLA-4. Cell Immunol.215, 133 (2002).
  • Jacobson EM, Concepcion E, Oashi T, Tomer Y. A Graves’ disease-associated Kozak sequence single-nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology. Endocrinology146, 2684–2691 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.