72
Views
4
CrossRef citations to date
0
Altmetric
Review

Vascular niche of pancreatic islets

, &
Pages 481-491 | Published online: 10 Jan 2014

References

  • Kühne J, Lea AS. Beobachtungen über die Absonderung des Pankreas. Untersuchtung Physiol. Instit. Univ. Heidelberg2, 40 (1882).
  • Nyman LR, Wells KS, Head WS et al. Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets. J. Clin. Invest.118(11), 3790–3797 (2008).
  • Bonner-Weir S. The microvasculature of the pancreas, with emphasis on that of the islets of Langerhans. In: The Pancreas: Biology, Pathobiology and Disease. Liang VW, DiMagno EP, Gardner JD, Lebenthal E, Reber HA, Schele GS (Eds.) Raven Press Ltd, NY, USA 759–768 (1993).
  • Murakami T, Fujita T, Taguchi T, Nonaka Y, Orita K. The blood vascular bed of the human pancreas, with special reference to the insulo-acinar portal system. Scanning electron microscopy of corrosion casts. Arch. Histol. Cytol.55(4), 381–395 (1992).
  • Brunicardi FC, Stagner J, Bonner-Weir S et al. Microcirculation of the islets of Langerhans. Long Beach Veterans Administration Regional Medical Education Center Symposium. Diabetes45(4), 385–392 (1996).
  • Bonner-Weir S, Orci L. New perspectives on the microvasculature of the islets of Langerhans in the rat. Diabetes31(10), 883–889 (1982).
  • Samols E, Stagner JI, Ewart RB, Marks V. The order of islet microvascular cellular perfusion is B–A–D in the perfused rat pancreas. J. Clin. Invest.82(1), 350–353 (1988).
  • Hauge-Evans AC, King AJ, Carmignac D et al. Somatostatin secreted by islet delta-cells fulfills multiple roles as a paracrine regulator of islet function. Diabetes58(2), 403–411 (2009).
  • Brissova M, Fowler MJ, Nicholson WE et al. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J. Histochem. Cytochem.53(9), 1087–1097 (2005).
  • Weir GC, Bonner-Weir S. Islets of Langerhans: the puzzle of intraislet interactions and their relevance to diabetes. J. Clin. Invest.85(4), 983–987 (1990).
  • Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl Acad. Sci. USA103(7), 2334–2339 (2006).
  • Ferner H. Das Inselsystem des Pankreas. (Eds). Georg Thieme, Stuttgart, Germany (1952).
  • Johansson M, Andersson A, Carlsson PO, Jansson L. Perinatal development of the pancreatic islet microvasculature in rats. J. Anat.208(2), 191–196 (2006).
  • Duvillie B, Cordonnier N, Deltour L et al. Phenotypic alterations in insulin-deficient mutant mice. Proc. Natl Acad. Sci. USA94(10), 5137–5140 (1997).
  • Brissova M, Shostak A, Shiota M et al. Pancreatic islet production of vascular endothelial growth factor-A is essential for islet vascularization, revascularization, and function. Diabetes55(11), 2974–2985 (2006).
  • Henderson JR, Moss MC. A morphometric study of the endocrine and exocrine capillaries of the pancreas. Q. J. Exp. Physiol.70(3), 347–356 (1985).
  • Lammert E, Gu G, McLaughlin M et al. Role of VEGF-A in vascularization of pancreatic islets. Curr. Biol.13(12), 1070–1074 (2003).
  • Kamba T, Tam BY, Hashizume H et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am. J. Physiol. Heart Circ. Physiol.290(2), H560–H576 (2006).
  • Jansson L, Hellerstrom C. Stimulation by glucose of the blood flow to the pancreatic islets of the rat. Diabetologia25(1), 45–50 (1983).
  • Carlsson PO, Andersson A, Jansson L. Pancreatic islet blood flow in normal and obese-hyperglycemic (ob/ob) mice. Am. J. Physiol.271(6 Pt 1), E990–E995 (1996).
  • Lifson N, Kramlinger KG, Mayrand RR, Lender EJ. Blood flow to the rabbit pancreas with special reference to the islets of Langerhans. Gastroenterology79(3), 466–473 (1980).
  • Jansson L, Carlsson PO. Graft vascular function after transplantation of pancreatic islets. Diabetologia45(6), 749–763 (2002).
  • Carlsson PO, Kallskog O, Bodin B, Andersson A, Jansson L. Multiple injections of coloured microspheres for islet blood flow measurements in anaesthetised rats: influence of microsphere size. Ups. J. Med. Sci.107(2), 111–120 (2002).
  • Carlsson PO, Jansson L, Ostenson CG, Kallskog O. Islet capillary blood pressure increase mediated by hyperglycemia in NIDDM GK rats. Diabetes46(6), 947–952 (1997).
  • Jansson L. The regulation of pancreatic islet blood flow. Diabetes Metab. Rev.10(4), 407–416 (1994).
  • Jansson L, Hellerstrom C. Glucose-induced changes in pancreatic islet blood flow mediated by central nervous system. Am. J. Physiol.251(6 Pt 1), E644–E647 (1986).
  • Carlsson PO, Iwase M, Jansson L. Stimulation of intestinal glucoreceptors in rats increases pancreatic islet blood flow through vagal mechanisms. Am. J. Physiol.276(1 Pt 2), R233–R236 (1999).
  • Carlsson PO, Iwase M, Jansson L. Intraportal glucose infusion and pancreatic islet blood flow in anesthetized rats. Am. J. Physiol. Regul. Integr. Comp. Physiol.279(4), R1224–R1229 (2000).
  • Carlsson PO, Olsson R, Kallskog O, Bodin B, Andersson A, Jansson L. Glucose-induced islet blood flow increase in rats: interaction between nervous and metabolic mediators. Am. J. Physiol. Endocrinol. Metab.283(3), E457–E464 (2002).
  • Lai EY, Jansson L, Patzak A, Persson AE. Vascular reactivity in arterioles from normal and alloxan-diabetic mice: studies on single perfused islets. Diabetes56(1), 107–112 (2007).
  • Svensson AM, Ostenson CG, Sandler S, Efendic S, Jansson L. Inhibition of nitric oxide synthase by NG-nitro-L-arginine causes a preferential decrease in pancreatic islet blood flow in normal rats and spontaneously diabetic GK rats. Endocrinology135(3), 849–853 (1994).
  • Carlsson PO, Berne C, Jansson L. Angiotensin II and the endocrine pancreas: effects on islet blood flow and insulin secretion in rats. Diabetologia41(2), 127–133 (1998).
  • Iwase M, Uchizono Y, Nohara S, Sasaki N, Sonoki K, Iida M. Angiotensin II type 1 receptor antagonists prevent glucose-induced increases in islet blood flow in rats. Scand. J. Clin. Lab. Invest.69(1), 145–150 (2009).
  • Lai EY, Persson AE, Bodin B et al. Endothelin-1 and pancreatic islet vasculature: studies in vivo and on isolated, vascularly perfused pancreatic islets. Am. J. Physiol. Endocrinol. Metab.292(6), E1616–E1623 (2007).
  • Carlsson PO, Berne C, Ostenson CG, Andersson A, Jansson L. Hypoglycaemia induces decreased islet blood perfusion mediated by the central nervous system in normal and Type 2 diabetic GK rats. Diabetologia46(8), 1124–1130 (2003).
  • Jansson L, Andersson A, Bodin B, Kallskog O. Pancreatic islet blood flow during euglycaemic, hyperinsulinaemic clamp in anaesthetized rats. Acta Physiol. (Oxf.)189(4), 319–324 (2007).
  • Dionne KE, Colton CK, Yarmush ML. Effect of hypoxia on insulin secretion by isolated rat and canine islets of Langerhans. Diabetes42(1), 12–21 (1993).
  • Carlsson PO, Jansson L, Palm F. Unaltered oxygen tension in rat pancreatic islets despite dissociation of insulin release and islet blood flow. Acta Physiol. Scand.176(4), 275–281 (2002).
  • Carlsson PO, Liss P, Andersson A, Jansson L. Measurements of oxygen tension in native and transplanted rat pancreatic islets. Diabetes47(7), 1027–1032 (1998).
  • Paty BW, Ryan EA, Shapiro AM, Lakey JR, Robertson RP. Intrahepatic islet transplantation in Type 1 diabetic patients does not restore hypoglycemic hormonal counterregulation or symptom recognition after insulin independence. Diabetes51(12), 3428–3434 (2002).
  • Lau J, Jansson L, Carlsson PO. Islets transplanted intraportally into the liver are stimulated to insulin and glucagon release exclusively through the hepatic artery. Am. J. Transplant.6(5 Pt 1), 967–975 (2006).
  • Zhou H, Zhang T, Bogdani M et al. Intrahepatic glucose flux as a mechanism for defective intrahepatic islet α-cell response to hypoglycemia. Diabetes57(6), 1567–1574 (2008).
  • Mattsson G, Jansson L, Carlsson PO. Decreased vascular density in mouse pancreatic islets after transplantation. Diabetes51(5), 1362–1366 (2002).
  • Lau J, Carlsson PO. Low revascularization of human islets when experimentally transplanted into the liver. Transplantation87(3), 322–325 (2009).
  • Westermark P, Engstrom U, Johnson KH, Westermark GT, Betsholtz C. Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc. Natl Acad. Sci. USA87(13), 5036–5040 (1990).
  • Meier JJ, Kayed R, Lin CY et al. Inhibition of human IAPP fibril formation does not prevent β-cell death: evidence for distinct actions of oligomers and fibrils of human IAPP. Am. J. Physiol. Endocrinol. Metab.291(6), E1317–E1324 (2006).
  • Huang CJ, Lin CY, Haataja L et al. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediated β-cell apoptosis, a characteristic of humans with Type 2 but not Type 1 diabetes. Diabetes56(8), 2016–2027 (2007).
  • Zraika S, Hull RL, Udayasankar J et al. Oxidative stress is induced by islet amyloid formation and time-dependently mediates amyloid-induced β cell apoptosis. Diabetologia52(4), 626–635 (2009).
  • Matveyenko AV, Gurlo T, Daval M, Butler AE, Butler PC. Successful versus failed adaptation to high-fat diet-induced insulin resistance: the role of IAPP-induced β-cell endoplasmic reticulum stress. Diabetes58(4), 906–916 (2009).
  • Westermark P, Eizirik DL, Pipeleers DG, Hellerstrom C, Andersson A. Rapid deposition of amyloid in human islets transplanted into nude mice. Diabetologia38(5), 543–549 (1995).
  • Marzban L, Tomas A, Becker TC et al. Small interfering RNA-mediated suppression of proislet amyloid polypeptide expression inhibits islet amyloid formation and enhances survival of human islets in culture. Diabetes57(11), 3045–3055 (2008).
  • Westermark GT, Westermark P, Berne C, Korsgren O. Widespread amyloid deposition in transplanted human pancreatic islets. N. Engl. J. Med.359(9), 977–979 (2008).
  • Andersson A, Bohman S, Borg LA et al. Amyloid deposition in transplanted human pancreatic islets: a conceivable cause of their long-term failure. Exp. Diabetes Res.2008, 562985 (2008).
  • Li X, Zhang L, Meshinchi S et al. Islet microvasculature in islet hyperplasia and failure in a model of Type 2 diabetes. Diabetes55(11), 2965–2973 (2006).
  • Homo-Delarche F, Calderari S, Irminger JC et al. Islet inflammation and fibrosis in a spontaneous model of Type 2 diabetes, the GK rat. Diabetes55(6), 1625–1633 (2006).
  • Svensson AM, Ostenson CG, Jansson L. Age-induced changes in pancreatic islet blood flow: evidence for an impaired regulation in diabetic GK rats. Am. J. Physiol. Endocrinol. Metab.279(5), E1139–E1144 (2000).
  • Lammert E, Cleaver O, Melton D. Induction of pancreatic differentiation by signals from blood vessels. Science294(5542), 564–567 (2001).
  • Lou J, Triponez F, Oberholzer J et al. Expression of α-1 proteinase inhibitor in human islet microvascular endothelial cells. Diabetes48(9), 1773–1778 (1999).
  • Favaro E, Bottelli A, Lozanoska-Ochser B et al. Primary and immortalised human pancreatic islet endothelial cells: phenotypic and immunological characterisation. Diabetologia48(12), 2552–2562 (2005).
  • Mattsson G, Danielsson A, Kriz V, Carlsson PO, Jansson L. Endothelial cells in endogenous and transplanted pancreatic islets: differences in the expression of angiogenic peptides and receptors. Pancreatology6(1–2), 86–95 (2006).
  • Yao VJ, Ozawa MG, Trepel M, Arap W, McDonald DM, Pasqualini R. Targeting pancreatic islets with phage display assisted by laser pressure catapult microdissection. Am. J. Pathol.166(2), 625–636 (2005).
  • Zanone MM, Favaro E, Doublier S et al. Expression of nephrin by human pancreatic islet endothelial cells. Diabetologia48(9), 1789–1797 (2005).
  • Flickinger BD, Olson MS. Localization of the platelet-activating factor receptor to rat pancreatic microvascular endothelial cells. Am. J. Pathol.154(5), 1353–1358 (1999).
  • Cantaluppi V, Biancone L, Romanazzi GM et al. Antiangiogenic and immunomodulatory effects of rapamycin on islet endothelium: relevance for islet transplantation. Am. J. Transplant.6(11), 2601–2611 (2006).
  • Olerud J. Role of thrombospondin-1 in endogenous and transplanted pancreatic islets. In: Medical Cell Biology. Uppsala, Sweden 57 (2009).
  • Matsumoto K, Yoshitomi H, Rossant J, Zaret KS. Liver organogenesis promoted by endothelial cells prior to vascular function. Science294(5542), 559–563 (2001).
  • LeCouter J, Moritz DR, Li B et al. Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science299(5608), 890–893 (2003).
  • Crawford SE, Stellmach V, Murphy-Ullrich JE et al. Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell93(7), 1159–1170 (1998).
  • Duvillie B, Currie C, Chrones T et al. Increased islet cell proliferation, decreased apoptosis, and greater vascularization leading to β-cell hyperplasia in mutant mice lacking insulin. Endocrinology143(4), 1530–1537 (2002).
  • Johansson M, Mattsson G, Andersson A, Jansson L, Carlsson PO. Islet endothelial cells and pancreatic β-cell proliferation: studies in vitro and during pregnancy in adult rats. Endocrinology147(5), 2315–2324 (2006).
  • Ham JN, Crutchlow MF, Desai BM, Simmons RA, Stoffers DA. Exendin-4 normalizes islet vascularity in intrauterine growth restricted rats: potential role of VEGF. Pediatr. Res.66(1), 42–46 (2009).
  • Iwashita N, Uchida T, Choi JB et al. Impaired insulin secretion in vivo but enhanced insulin secretion from isolated islets in pancreatic β cell-specific vascular endothelial growth factor-A knock-out mice. Diabetologia50(2), 380–389 (2007).
  • Toyofuku Y, Uchida T, Nakayama S et al. Normal islet vascularization is dispensable for expansion of β-cell mass in response to high-fat diet induced insulin resistance. Biochem. Biophys. Res. Commun.383(3), 303–307 (2009).
  • Nikolova G, Jabs N, Konstantinova I et al. The vascular basement membrane: a niche for insulin gene expression and β cell proliferation. Dev. Cell10(3), 397–405 (2006).
  • Virtanen I, Banerjee M, Palgi J et al. Blood vessels of human islets of Langerhans are surrounded by a double basement membrane. Diabetologia51(7), 1181–1191 (2008).
  • Sjoholm A, Hellerstrom C. TGF-β stimulates insulin secretion and blocks mitogenic response of pancreatic β-cells to glucose. Am. J. Physiol.260(5 Pt 1), C1046–C1051 (1991).
  • Hanley S, Rosenberg L. Transforming growth factor β is a critical regulator of adult human islet plasticity. Mol. Endocrinol.21(6), 1467–1477 (2007).
  • Olerud J, Johansson M, Lawler J, Welsh N, Carlsson PO. Improved vascular engraftment and graft function after inhibition of the angiostatic factor thrombospondin-1 in mouse pancreatic islets. Diabetes57(7), 1870–1877 (2008).
  • Kaido T, Yebra M, Cirulli V, Montgomery AM. Regulation of human β-cell adhesion, motility, and insulin secretion by collagen IV and its receptor α1β1. J. Biol. Chem.279(51), 53762–53769 (2004).
  • Johansson Å, Lau J, Sandberg M, Borg LA, Magnusson PU, Carlsson P-O. Islet endothelial cell signaling augment β cell function. Diabetologia (2009) (In press).
  • Gregersen S, Thomsen JL, Brock B, Hermansen K. Endothelin-1 stimulates insulin secretion by direct action on the islets of Langerhans in mice. Diabetologia39(9), 1030–1035 (1996).
  • Henningsson R, Salehi A, Lundquist I. Role of nitric oxide synthase isoforms in glucose-stimulated insulin release. Am. J. Physiol. Cell Physiol.283(1), C296–C304 (2002).
  • Robertson RP, Gavareski DJ, Porte D Jr, Bierman EL. Inhibition of in vivo insulin secretion by prostaglandin E1. J. Clin. Invest.54(2), 310–315 (1974).
  • Turk J, Hughes JH, Easom RA et al. Arachidonic acid metabolism and insulin secretion by isolated human pancreatic islets. Diabetes37(7), 992–996 (1988).
  • Tran PO, Gleason CE, Poitout V, Robertson RP. Prostaglandin E(2) mediates inhibition of insulin secretion by interleukin-1β. J. Biol. Chem.274(44), 31245–31248 (1999).
  • Meng ZX, Sun JX, Ling JJ et al. Prostaglandin E2 regulates Foxo activity via the Akt pathway: implications for pancreatic islet β cell dysfunction. Diabetologia49(12), 2959–2968 (2006).
  • Heitmeier MR, Kelly CB, Ensor NJ et al. Role of cyclooxygenase-2 in cytokine-induced β-cell dysfunction and damage by isolated rat and human islets. J. Biol. Chem.279(51), 53145–53151 (2004).
  • Yang XD, Michie SA, Mebius RE, Tisch R, Weissman I, McDevitt HO. The role of cell adhesion molecules in the development of IDDM: implications for pathogenesis and therapy. Diabetes45(6), 705–710 (1996).
  • Lozanoska-Ochser B, Klein NJ, Huang GC, Alvarez RA, Peakman M. Expression of CD86 on human islet endothelial cells facilitates T cell adhesion and migration. J. Immunol.181(9), 6109–6116 (2008).
  • Zanone MM, Favaro E, Ferioli E et al. Human pancreatic islet endothelial cells express coxsackievirus and adenovirus receptor and are activated by coxsackie B virus infection. FASEB J.21(12), 3308–3317 (2007).
  • De Paepe ME, Corriveau M, Tannous WN, Seemayer TA, Colle E. Increased vascular permeability in pancreas of diabetic rats: detection with high resolution protein A-gold cytochemistry. Diabetologia35(12), 1118–1124 (1992).
  • Suschek CV, Bonmann E, Kolb-Bachofen V. A regulatory defect of constitutive no-synthase in islet endothelial cells correlates with probability of disease manifestation in BBdp rats. Diabetologia42(4), 457–464 (1999).
  • Steiner L, Kroncke K, Fehsel K, Kolb-Bachofen V. Endothelial cells as cytotoxic effector cells: cytokine-activated rat islet endothelial cells lyse syngeneic islet cells via nitric oxide. Diabetologia40(2), 150–155 (1997).
  • Li Y, Zhou ZG, Zhang J et al. Microcirculatory detection of Toll-like receptor 4 in rat pancreas and intestine. Clin. Hemorheol. Microcirc.34(1–2), 213–219 (2006).
  • Lien E, Zipris D. The role of Toll-like receptor pathways in the mechanism of Type 1 diabetes. Curr. Mol. Med.9(1), 52–68 (2009).
  • Schulthess FT, Paroni F, Sauter NS et al. CXCL10 impairs β cell function and viability in diabetes through TLR4 signaling. Cell Metab.9(2), 125–139 (2009).
  • Biancone L, Cantaluppi V, Romanazzi GM et al. Platelet-activating factor synthesis and response on pancreatic islet endothelial cells: relevance for islet transplantation. Transplantation81(4), 511–518 (2006).
  • Favaro E, Miceli I, Bussolati B et al. Hyperglycemia induces apoptosis of human pancreatic islet endothelial cells: effects of pravastatin on the Akt survival pathway. Am. J. Pathol.173(2), 442–450 (2008).
  • Tikellis C, Wookey PJ, Candido R, Andrikopoulos S, Thomas MC, Cooper ME. Improved islet morphology after blockade of the renin–angiotensin system in the ZDF rat. Diabetes53(4), 989–997 (2004).
  • Lau T, Carlsson PO, Leung PS. Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets. Diabetologia47(2), 240–248 (2004).
  • Chu KY, Lau T, Carlsson PO, Leung PS. Angiotensin II type 1 receptor blockade improves β-cell function and glucose tolerance in a mouse model of Type 2 diabetes. Diabetes55(2), 367–374 (2006).
  • Nyqvist D, Kohler M, Wahlstedt H, Berggren PO. Donor islet endothelial cells participate in formation of functional vessels within pancreatic islet grafts. Diabetes54(8), 2287–2293 (2005).
  • Olsson R, Maxhuni A, Carlsson PO. Revascularization of transplanted pancreatic islets following culture with stimulators of angiogenesis. Transplantation82(3), 340–347 (2006).
  • Linn T, Schneider K, Hammes HP et al. Angiogenic capacity of endothelial cells in islets of Langerhans. FASEB J.17(8), 881–883 (2003).
  • Brissova M, Fowler M, Wiebe P et al. Intraislet endothelial cells contribute to revascularization of transplanted pancreatic islets. Diabetes53(5), 1318–1325 (2004).
  • Johansson M, Olerud J, Jansson L, Carlsson PO. Prolactin treatment improves engraftment and function of transplanted pancreatic islets. Endocrinology150(4), 1646–1653 (2009).
  • Zhang N, Richter A, Suriawinata J et al. Elevated vascular endothelial growth factor production in islets improves islet graft vascularization. Diabetes53(4), 963–970 (2004).
  • Mattsson G, Jansson L, Nordin A, Andersson A, Carlsson PO. Evidence of functional impairment of syngeneically transplanted mouse pancreatic islets retrieved from the liver. Diabetes53(4), 948–954 (2004).
  • Lau J, Mattsson G, Carlsson C et al. Implantation site-dependent dysfunction of transplanted pancreatic islets. Diabetes56(6), 1544–1550 (2007).
  • Lau J, Kampf C, Mattsson G et al. Beneficial role of pancreatic microenvironment for angiogenesis in transplanted pancreatic islets. Cell Transplant. (2009) (In press).
  • Ahn YB, Xu G, Marselli L et al. Changes in gene expression in β cells after islet isolation and transplantation using laser-capture microdissection. Diabetologia50(2), 334–342 (2007).
  • Akiyama H, Kondoh T, Kokunai T, Nagashima T, Saito N, Tamaki N. Blood-brain barrier formation of grafted human umbilical vein endothelial cells in athymic mouse brain. Brain Res.858(1), 172–176 (2000).
  • Hart TK, Pino RM. Pseudoislet vascularization. Induction of diaphragm-fenestrated endothelia from the hepatic sinusoids. Lab. Invest.54(3), 304–313 (1986).
  • Carlsson PO, Jansson L, Andersson A, Kallskog O. Capillary blood pressure in syngeneic rat islets transplanted under the renal capsule is similar to that of the implantation organ. Diabetes47(10), 1586–1593 (1998).
  • Wasserman SM, Topper JN. Adaptation of the endothelium to fluid flow: in vitro analyses of gene expression and in vivo implications. Vasc. Med.9(1), 35–45 (2004).
  • Kampf C, Lau T, Olsson R, Leung PS, Carlsson PO. Angiotensin II type 1 receptor inhibition markedly improves the blood perfusion, oxygen tension and first phase of glucose-stimulated insulin secretion in revascularised syngeneic mouse islet grafts. Diabetologia48(6), 1159–1167 (2005).
  • Olsson R, Jansson L, Andersson A, Carlsson PO. Local blood flow regulation in transplanted rat pancreatic islets: influence of adenosine, angiotensin II, and nitric oxide inhibition. Transplantation70(2), 280–287 (2000).
  • Lukinius A, Jansson L, Korsgren O. Ultrastructural evidence for blood microvessels devoid of an endothelial cell lining in transplanted pancreatic islets. Am. J. Pathol.146(2), 429–435 (1995).
  • McDonald DM, Munn L, Jain RK. Vasculogenic mimicry: how convincing, how novel, and how significant? Am. J. Pathol.156(2), 383–388 (2000).
  • Imai J, Katagiri H, Yamada T et al. Regulation of pancreatic β cell mass by neuronal signals from the liver. Science322(5905), 1250–1254 (2008).
  • Ryan EA, Paty BW, Senior PA et al. Five-year follow-up after clinical islet transplantation. Diabetes54(7), 2060–2069 (2005).
  • Blomeier H, Zhang X, Rives C et al. Polymer scaffolds as synthetic microenvironments for extrahepatic islet transplantation. Transplantation82(4), 452–459 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.