39
Views
31
CrossRef citations to date
0
Altmetric
Review

Tumor-induced osteomalacia

&
Pages 435-442 | Published online: 10 Jan 2014

References

  • Econs MJ, Drezner MK. Tumor-induced osteomalacia – unveiling a new hormone. N. Engl. J. Med.330(23), 1679–1681 (1994).
  • Cai Q, Hodgson SF, Kao PC et al. Brief report: inhibition of renal phosphate transport by a tumor product in a patient with oncogenic osteomalacia. N. Engl. J. Med.330(23), 1645–1649 (1994).
  • Ryan EA, Reiss E. Oncogenous osteomalacia. Review of the world literature of 42 cases and report of two new cases. Am. J. Med.77(3), 501–512 (1984).
  • Imel EA, Peacock M, Pitukcheewanont P et al. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia. J. Clin. Endocrinol. Metab.91(6), 2055–2061 (2006).
  • Firth RG, Grant CS, Riggs BL. Development of hypercalcemic hyperparathyroidism after long-term phosphate supplementation in hypophosphatemic osteomalacia. Report of two cases. Am. J. Med.78(4), 669–673 (1985).
  • Edelson GW, Shih MS, Parfitt AM. A unique case of adult hypophosphatemic osteomalacia. Bone14(5), 707–710 (1993).
  • Drezner M. Tumor-induced rickets and osteomalacia. In: Primer on the Metabolic Bone Disease and Disorders of Mineral Metabolism. Favus MJ (Ed.). Raven Press, NY, USA 319–325 (1996).
  • Schapira D, Ben Izhak O, Nachtigal A et al. Tumor-induced osteomalacia. Semin. Arthritis Rheum.25(1), 35–46 (1995).
  • Weidner N, Santa Cruz D. Phosphaturic mesenchymal tumors. A polymorphous group causing osteomalacia or rickets. Cancer59(8), 1442–1454 (1987).
  • Lorenz-Depiereux B, Benet-Pages A, Eckstein G et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am. J. Hum. Genet.78(2), 193–201 (2006).
  • Bergwitz C, Roslin NM, Tieder M et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am. J. Hum. Genet.78(2), 179–192 (2006).
  • Tieder M, Modai D, Shaked U et al. “Idiopathic” hypercalciuria and hereditary hypophosphatemic rickets. Two phenotypical expressions of a common genetic defect. N. Engl. J. Med.316(3), 125–129 (1987).
  • Folpe AL, Fanburg-Smith JC, Billings SD et al. Most osteomalacia-associated mesenchymal tumors are a single histopathologic entity: an analysis of 32 cases and a comprehensive review of the literature. Am. J. Surg. Pathol.28(1), 1–30 (2004).
  • Fukumoto S, Takeuchi Y, Nagano A, Fujita T. Diagnostic utility of magnetic resonance imaging skeletal survey in a patient with oncogenic osteomalacia. Bone25(3), 375–377 (1999).
  • Hodgson SF, Clarke BL, Tebben PJ, Mullan BP, Cooney WP 3rd, Shives TC. Oncogenic osteomalacia: localization of underlying peripheral mesenchymal tumors with use of Tc 99m sestamibi scintigraphy. Endocr. Pract.12(1), 35–42 (2006).
  • Kimizuka T, Ozaki Y, Sumi Y. Usefulness of 201Tl and 99mTc MIBI scintigraphy in a case of oncogenic osteomalacia. Ann. Nucl. Med.18(1), 63–67 (2004).
  • Jan de Beur SM, Streeten EA, Civelek AC et al. Localisation of mesenchymal tumours by somatostatin receptor imaging. Lancet359(9308), 761–763 (2002).
  • Seufert J, Ebert K, Muller J et al. Octreotide therapy for tumor-induced osteomalacia. N. Engl. J. Med.345(26), 1883–1888 (2001).
  • Duet M, Kerkeni S, Sfar R, Bazille C, Liote F, Orcel P. Clinical impact of somatostatin receptor scintigraphy in the management of tumor-induced osteomalacia. Clin. Nucl. Med.33(11), 752–756 (2008).
  • Nasu T, Kurisu S, Matsuno S et al. Tumor-induced hypophosphatemic osteomalacia diagnosed by the combinatory procedures of magnetic resonance imaging and venous sampling for FGF23. Intern. Med.47(10), 957–961 (2008).
  • van Boekel G, Ruinemans-Koerts J, Joosten F, Dijkhuizen P, van Sorge A, de Boer H. Tumor producing fibroblast growth factor 23 localized by two-staged venous sampling. Eur. J. Endocrinol.158(3), 431–437 (2008).
  • Westerberg PA, Olauson H, Toss G et al. Preoperative tumor localization by means of venous sampling for fibroblast growth factor-23 in a patient with tumor-induced osteomalacia. Endocr. Pract.14(3), 362–367 (2008).
  • Hesse E, Moessinger E, Rosenthal H et al. Oncogenic osteomalacia: exact tumor localization by co-registration of positron emission and computed tomography. J. Bone Miner. Res.22(1), 158–162 (2007).
  • Roarke MC, Nguyen BD. PET/CT localization of phosphaturic mesenchymal neoplasm causing tumor-induced osteomalacia. Clin. Nucl. Med.32(4), 300–301 (2007).
  • Khadgawat R, Singh Y, Kansara S et al. PET/CT localisation of a scapular haemangiopericytoma with tumour-induced osteomalacia. Singapore Med. J.50(2), e55–e57 (2009).
  • Mannstadt M, Lorente C, Juppner H. Rapid detection of intact FGF-23 in tumor tissue from patients with oncogenic osteomalacia. Clin. Chem.54(7), 1252–1254 (2008).
  • Chalew SA, Lovchik JC, Brown CM, Sun CC. Hypophosphatemia induced in mice by transplantation of a tumor-derived cell line from a patient with oncogenic rickets. J. Pediatr. Endocrinol. Metab.9(6), 593–597 (1996).
  • ADHR-Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet.26(3), 345–348 (2000).
  • Shimada T, Muto T, Urakawa I et al. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology143(8), 3179–3182 (2002).
  • White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int.60(6), 2079–2086 (2001).
  • Riminucci M, Collins MT, Fedarko NS et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J. Clin. Invest.112(5), 683–692 (2003).
  • Jonsson KB, Zahradnik R, Larsson T et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N. Engl. J. Med.348(17), 1656–1663 (2003).
  • Yamazaki Y, Okazaki R, Shibata M et al. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J. Clin. Endocrinol. Metab.87(11), 4957–4960 (2002).
  • White KE, Jonsson KB, Carn G et al. The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J. Clin. Endocrinol. Metab.86(2), 497–500 (2001).
  • Shimada T, Mizutani S, Muto T et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA98(11), 6500–6505 (2001).
  • Jan De Beur SM, Finnegan RB, Vassiliadis J et al. Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J. Bone Miner. Res.17(6), 1102–1110 (2002).
  • Larsson T, Zahradnik R, Lavigne J, Ljunggren O, Juppner H, Jonsson KB. Immunohistochemical detection of FGF-23 protein in tumors that cause oncogenic osteomalacia. Eur. J. Endocrinol.148(2), 269–276 (2003).
  • Perwad F, Azam N, Zhang MY, Yamashita T, Tenenhouse HS, Portale AA. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology146(12), 5358–5364 (2005).
  • Antoniucci DM, Yamashita T, Portale AA. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J. Clin. Endocrinol. Metab.91(8), 3144–3149 (2006).
  • Nishida Y, Taketani Y, Yamanaka-Okumura H et al. Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int.70(12), 2141–2147 (2006).
  • Ito N, Fukumoto S, Takeuchi Y et al. Effect of acute changes of serum phosphate on fibroblast growth factor (FGF)23 levels in humans. J. Bone Miner. Metab.25(6), 419–422 (2007).
  • Gutierrez OM, Mannstadt M, Isakova T et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med.359(6), 584–592 (2008).
  • Shimada T, Hasegawa H, Yamazaki Y et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res.19(3), 429–435 (2004).
  • Hesse M, Frohlich LF, Zeitz U, Lanske B, Erben RG. Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf-23 deficient mice. Matrix Biol.26(2), 75–84 (2007).
  • Kuro-o M, Matsumura Y, Aizawa H et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature390(6655), 45–51 (1997).
  • Krajisnik T, Bjorklund P, Marsell R et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1α-hydroxylase expression in cultured bovine parathyroid cells. J. Endocrinol.195(1), 125–131 (2007).
  • Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V et al. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest.117(12), 4003–4008 (2007).
  • Schouten BJ, Hunt PJ, Livesey JH, Frampton CM, Soule SG. FGF23 elevation and hypophosphataemia following intravenous iron polymaltose – a prospective study. J. Clin. Endocrinol. Metab.94(7), 2332–2337 (2009).
  • Larsson T, Marsell R, Schipani E et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the α1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology145(7), 3087–3094 (2004).
  • Shimada T, Urakawa I, Yamazaki Y et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem. Biophys. Res. Comm.314(2), 409–414 (2004).
  • Shimada T, Kakitani M, Yamazaki Y et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest.113(4), 561–568 (2004).
  • Sitara D, Razzaque MS, Hesse M et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol.23(7), 421–432 (2004).
  • Urakawa I, Yamazaki Y, Shimada T et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature444(7120), 770–774 (2006).
  • Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem. Biophys. Res. Commun.242(3), 626–630 (1998).
  • Imura A, Iwano A, Tohyama O et al. Secreted Klotho protein in sera and CSF: implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Lett.565(1–3), 143–147 (2004).
  • Kurosu H, Ogawa Y, Miyoshi M et al. Regulation of fibroblast growth factor-23 signaling by klotho. J. Biol. Chem.281(10), 6120–6123 (2006).
  • Segawa H, Yamanaka S, Ohno Y et al. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am. J. Physiol. Renal Physiol.292(2), F769–F779 (2007).
  • Ichikawa S, Imel EA, Kreiter ML et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J. Clin. Invest.117(9), 2684–2691 (2007).
  • Farrow EG, Davis SI, Summers LJ, White KE. Initial FGF23-mediated signaling occurs in the distal convoluted tubule. J. Am. Soc. Nephrol.20(5), 955–960 (2009).
  • Khosravi A, Cutler CM, Kelly MH et al. Determination of the elimination half-life of fibroblast growth factor-23. J. Clin. Endocrinol. Metab.92(6), 2374–2377 (2007).
  • Takeuchi Y, Suzuki H, Ogura S et al. Venous sampling for fibroblast growth factor-23 confirms preoperative diagnosis of tumor-induced osteomalacia. J. Clin. Endocrinol. Metab.89(8), 3979–3982 (2004).
  • Rowe PS, de Zoysa PA, Dong R et al. MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics67(1), 54–68 (2000).
  • Berndt T, Craig TA, Bowe AE et al. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J. Clin. Invest.112(5), 785–794 (2003).
  • Carpenter TO, Ellis BK, Insogna KL, Philbrick WM, Sterpka J, Shimkets R. Fibroblast growth factor 7: an inhibitor of phosphate transport derived from oncogenic osteomalacia-causing tumors. J. Clin. Endocrinol. Metab.90(2), 1012–1020 (2005).
  • Lu C, Huang S, Miclau T, Helms JA, Colnot C. Mepe is expressed during skeletal development and regeneration. Histochem. Cell Biol.121(6), 493–499 (2004).
  • Nampei A, Hashimoto J, Hayashida K et al. Matrix extracellular phosphoglycoprotein (MEPE) is highly expressed in osteocytes in human bone. J. Bone Miner. Metab.22(3), 176–184 (2004).
  • Siggelkow H, Schmidt E, Hennies B, Hufner M. Evidence of downregulation of matrix extracellular phosphoglycoprotein during terminal differentiation in human osteoblasts. Bone35(2), 570–576 (2004).
  • Rowe PS, Kumagai Y, Gutierrez G et al. MEPE has the properties of an osteoblastic phosphatonin and minhibin. Bone34(2), 303–319 (2004).
  • Jones SE, Jomary C. Secreted Frizzled-related proteins: searching for relationships and patterns. Bioessays24(9), 811–820 (2002).
  • Rattner A, Hsieh JC, Smallwood PM et al. A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc. Natl Acad. Sci. USA94(7), 2859–2863 (1997).
  • Berndt T, Craig TA, Bowe AE et al. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J. Clin. Invest.112(5), 785–794 (2003).
  • Kurose K, Sakaguchi M, Nasu Y et al. Decreased expression of REIC/Dkk-3 in human renal clear cell carcinoma. J. Urol.171(3), 1314–1318 (2004).
  • Nozaki I, Tsuji T, Iijima O et al. Reduced expression of REIC/Dkk-3 gene in non-small cell lung cancer. Int. J. Oncol.19(1), 117–121 (2001).
  • Tsuji T, Nozaki I, Miyazaki M et al. Antiproliferative activity of REIC/Dkk-3 and its significant down-regulation in non-small-cell lung carcinomas. Biochem. Biophys. Res. Commun.289(1), 257–263 (2001).
  • Feng JQ, Ward LM, Liu S et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat. Genet.38(11), 1310–1315 (2006).
  • Lorenz-Depiereux B, Bastepe M, Benet-Pages A et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat. Genet.38(11), 1248–1250 (2006).
  • Endo I, Fukumoto S, Ozono K et al. Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients: proposal of diagnostic criteria using FGF23 measurement. Bone42(6), 1235–1239 (2008).
  • Imel EA, Hui SL, Econs MJ. FGF23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets. J. Bone Miner. Res.22(4), 520–526 (2007).
  • Farrow EG, Davis SI, Ward LM et al. Molecular analysis of DMP1 mutants causing autosomal recessive hypophosphatemic rickets. Bone44(2), 287–294 (2009).
  • Yamazaki Y, Tamada T, Kasai N et al. Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J. Bone Miner. Res.23(9), 1509–1518 (2008).
  • Aono Y, Yamazaki Y, Yasutake J et al. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J. Bone Miner. Res. (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.