515
Views
7
CrossRef citations to date
0
Altmetric
Editorial

Switching fat from the periphery to bone marrow: why in Type I diabetes?

Pages 203-207 | Published online: 10 Jan 2014

References

  • McCabe LR. Understanding the pathology and mechanisms of Type I diabetic bone loss. J. Cell. Biochem.102(6), 1343–1357 (2007).
  • Hofbauer LC, Brueck CC, Singh SK, Dobnig H. Osteoporosis in patients with diabetes mellitus. J. Bone Miner. Res.22(9), 1317–1328 (2007).
  • Bouillon R, Bex M, Van Herck E et al. Influence of age, sex, and insulin on osteoblast function: osteoblast dysfunction in diabetes mellitus. J. Clin. Endocrinol. Metab.80(4), 1194–1202 (1995).
  • Kemink SA, Hermus AR, Swinkels LM, Lutterman JA, Smals AG. Osteopenia in insulin-dependent diabetes mellitus; prevalence and aspects of pathophysiology. J. Endocrinol. Invest.23(5), 295–303 (2000).
  • Auwerx J, Dequeker J, Bouillon R, Geusens P, Nijs J. Mineral metabolism and bone mass at peripheral and axial skeleton in diabetes mellitus. Diabetes37(1), 8–12 (1988).
  • Krakauer JC, McKenna MJ, Buderer NF et al. Bone loss and bone turnover in diabetes. Diabetes44(7), 775–782 (1995).
  • Levin ME, Boisseau VC, Avioli LV. Effects of diabetes mellitus on bone mass in juvenile and adult-onset diabetes. N. Engl. J. Med.294(5), 241–245 (1976).
  • Tuominen JT, Impivaara O, Puukka P, Ronnemaa T. Bone mineral density in patients with Type 1 and Type 2 diabetes. Diabetes Care22(7), 1196–1200 (1999).
  • Munoz-Torres M, Jodar E, Escobar-Jimenez F, Lopez-Ibarra PJ, Luna JD. Bone mineral density measured by dual x-ray absorptiometry in Spanish patients with insulin-dependent diabetes mellitus. Calcif. Tissue Int.58(5), 316–319 (1996).
  • Buysschaert M, Cauwe F, Jamart J et al. Proximal femur density in Type 1 and 2 diabetic patients. Diabetes Metab.18(1), 32–37 (1992).
  • Hadjidakis DJ, Raptis AE, Sfakianakis M, Mylonakis A, Raptis SA. Bone mineral density of both genders in Type 1 diabetes according to bone composition. J. Diabetes Complicat.20(5), 302–307 (2006).
  • Strotmeyer ES, Cauley JA, Orchard TJ, Steenkiste AR, Dorman JS. Middle-aged premenopausal women with Type 1 diabetes have lower bone mineral density and calcaneal quantitative ultrasound than nondiabetic women. Diabetes Care29(2), 306–311 (2006).
  • Miao J, Brismar K, Nyren O, Ugarph-Morawski A, Ye W. Elevated hip fracture risk in Type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care28(12), 2850–2855 (2005).
  • Botolin S, Faugere MC, Malluche H et al. Increased bone adiposity and peroxisomal proliferator-activated receptor-γ2 expression in Type I diabetic mice. Endocrinology146(8), 3622–3631 (2005).
  • Botolin S, McCabe LR. Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice. Endocrinology148(1), 198–205 (2007).
  • Tornvig L, Mosekilde LI, Justesen J, Falk E, Kassem M. Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice. Calcif. Tissue Int.69(1), 46–50 (2001).
  • Lazarenko OP, Rzonca SO, Suva LJ, Lecka-Czernik B. Netoglitazone is a PPAR-γ ligand with selective effects on bone and fat. Bone38(1), 74–84 (2006).
  • Lecka-Czernik B, Moerman EJ, Grant DF et al. Divergent effects of selective peroxisome proliferator-activated receptor-γ 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology143(6), 2376–2384 (2002).
  • Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin. Orthop.80, 147–154 (1971).
  • Jilka RL, Weinstein RS, Takahashi K, Parfitt AM, Manolagas SC. Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence. J. Clin. Invest.97(7), 1732–1740 (1996).
  • Kajkenova O, Lecka-Czernik B, Gubrij I et al. Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J. Bone Miner. Res.12(11), 1772–1779 (1997).
  • Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J. Clin. Pathol.55(9), 693–698 (2002).
  • Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME. Playing with bone and fat. J. Cell. Biochem.98(2), 251–266 (2006).
  • Di Iorgi N, Rosol M, Mittelman SD, Gilsanz V. Reciprocal relation between marrow adiposity and the amount of bone in the axial and appendicular skeleton of young adults. J. Clin. Endocrinol. Metab.93(6), 2281–2286 (2008).
  • Akune T, Ohba S, Kamekura S et al. PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J. Clin. Invest.113(6), 846–855 (2004).
  • Cock TA, Back J, Elefteriou F et al. Enhanced bone formation in lipodystrophic PPARγ(hyp/hyp) mice relocates haematopoiesis to the spleen. EMBO Rep.5(10), 1007–1012 (2004).
  • Hwang S, Panicek DM. Magnetic resonance imaging of bone marrow in oncology, part 1. Skeletal Radiol.36(10), 913–920 (2007).
  • Gimble JM, Nuttall ME. Bone and fat: old questions, new insights. Endocrine23(2–3), 183–188 (2004).
  • Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat. Clin. Pract. Rheumatol.2(1), 35–43 (2006).
  • Ahdjoudj S, Lasmoles F, Holy X, Zerath E, Marie PJ. Transforming growth factor β2 inhibits adipocyte differentiation induced by skeletal unloading in rat bone marrow stroma. J. Bone Miner. Res.17(4), 668–677 (2002).
  • Duque G, Rivas D, Li W et al. Age-related bone loss in the LOU/c rat model of healthy ageing. Exp. Gerontol.44(3), 183–189 (2009).
  • Gealekman O, Burkart A, Chouinard M et al. Enhanced angiogenesis in obesity and in response to PPARγ activators through adipocyte VEGF and ANGPTL4 production. Am. J. Physiol. Endocrinol. Metab.295(5), E1056–E1064 (2008).
  • Rzonca SO, Suva LJ, Gaddy D, Montague DC, Lecka-Czernik B. Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology145(1), 401–406 (2004).
  • Li M, Kim DH, Tsenovoy PL et al. Treatment of obese diabetic mice with a heme oxygenase inducer reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance. Diabetes57(6), 1526–1535 (2008).
  • Di Iorgi N, Mittelman SD, Gilsanz V. Differential effect of marrow adiposity and visceral and subcutaneous fat on cardiovascular risk in young, healthy adults. Int. J. Obes. (Lond.)32(12), 1854–1860 (2008).
  • Allison S, Baldock P, Enriquez R et al. Critical interplay between neuropeptide Y and sex steroid pathways in bone and adipose tissue homeostasis. J. Bone Miner. Res. (2008) (Epub ahead of print).
  • Perrini S, Laviola L, Cignarelli A et al. Fat depot-related differences in gene expression, adiponectin secretion, and insulin action and signalling in human adipocytes differentiated in vitro from precursor stromal cells. Diabetologia51(1), 155–164 (2008).
  • Tran TT, Yamamoto Y, Gesta S, Kahn CR. Beneficial effects of subcutaneous fat transplantation on metabolism. Cell. Metab.7(5), 410–420 (2008).
  • Walker GE, Verti B, Marzullo P et al. Deep subcuta neous adipose tissue: a distinct abdominal adipose depot. Obesity (Silver Spring)15(8), 1933–1943 (2007).
  • Tchkonia T, Lenburg M, Thomou T et al. Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am. J. Physiol. Endocrinol. Metab.292(1), E298–E307 (2007).
  • Macotela Y, Boucher J, Tran TT, Kahn CR. Gender and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes58(4), 803–812 (2009).
  • Martin LM, McCabe LR. Type I diabetic bone phenotype is location but not gender dependent. Histochem. Cell. Biol.128(2), 125–133 (2007).
  • Hamrick MW, Pennington C, Newton D, Xie D, Isales C. Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone34(3), 376–383 (2004).
  • Motyl KJ, McCabe LR. Leptin treatment prevents Type I diabetic marrow adiposity but not bone loss in mice. J. Cell. Physiol.218(2), 376–384 (2009).
  • Vande Berg BC, Malghem J, Lecouvet FE, Lambert M, Maldague BE. Distribution of serouslike bone marrow changes in the lower limbs of patients with anorexia nervosa: predominant involvement of the distal extremities. AJR Am. J. Roentgenol.166(3), 621–625 (1996).
  • Seaman JP, Kjeldsberg CR, Linker A. Gelatinous transformation of the bone marrow. Hum. Pathol.9(6), 685–692 (1978).
  • Smith RR, Spivak JL. Marrow cell necrosis in anorexia nervosa and involuntary starvation. Br. J. Haematol.60(3), 525–530 (1985).
  • Mehta K, Gascon P, Robboy S. The gelatinous bone marrow (serous atrophy) in patients with acquired immunodeficiency syndrome. Evidence of excess sulfated glycosaminoglycan. Arch. Pathol. Lab. Med.116(5), 504–508 (1992).
  • Motyl K, McCabe L. Streptozotocin, Type I diabetes severity and bone. Biol. Proced. Online (In press).
  • Irwin R, Lin HV, Motyl KJ, McCabe LR. Normal bone density obtained in the absence of insulin receptor expression in bone. Endocrinology147(12), 5760–5767 (2006).
  • Botolin S, McCabe LR. Inhibition of PPARγ prevents Type I diabetic bone marrow adiposity but not bone loss. J. Cell. Physiol.209(3), 967–976 (2006).
  • Botolin S, McCabe LR. Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J. Cell. Biochem.99(2), 411–424 (2006).
  • Yoshida O, Inaba M, Terada M et al. Impaired response of human osteosarcoma (MG-63) cells to human parathyroid hormone induced by sustained exposure to high glucose. Miner. Electrolyte Metab.21(1–3), 201–204 (1995).
  • Terada M, Inaba M, Yano Y et al. Growth-inhibitory effect of a high glucose concentration on osteoblast-like cells. Bone 22(1), 17–23 (1998).
  • Li YM, Schilling T, Benisch P et al. Effects of high glucose on mesenchymal stem cell proliferation and differentiation. Biochem. Biophys. Res. Commun.363(1), 209–215 (2007).
  • Balint E, Szabo P, Marshall CF, Sprague SM. Glucose-induced inhibition of in vitro bone mineralization. Bone28(1), 21–28. (2001).
  • Motyl KJ, Botolin S, Irwin R et al. Bone inflammation and altered gene expression with Type I diabetes early onset. J. Cell. Physiol.218(3), 575–583 (2009).
  • Gilbert L, He X, Farmer P et al. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2α A) is inhibited by tumor necrosis factor-α. J. Biol. Chem.277(4), 2695–2701 (2002).
  • Nanes MS. Tumor necrosis factor-α: molecular and cellular mechanisms in skeletal pathology. Gene321, 1–15 (2003).
  • Romas E, Gillespie MT, Martin TJ. Involvement of receptor activator of NFκB ligand and tumor necrosis factor-α in bone destruction in rheumatoid arthritis. Bone30(2), 340–346 (2002).
  • Zhou FH, Foster BK, Zhou XF, Cowin AJ, Xian CJ. TNF-α mediates p38 MAP kinase activation and negatively regulates bone formation at the injured growth plate in rats. J. Bone Miner. Res.21(7), 1075–1088 (2006).
  • Christopher MJ, Link DC. Granulocyte colony-stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation. J. Bone Miner. Res.23(11), 1765–1774 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.