19
Views
20
CrossRef citations to date
0
Altmetric
Special Report

Androgen receptor abnormalities in castration-recurrent prostate cancer

&
Pages 417-422 | Published online: 10 Jan 2014

References

  • Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT. Nuclear receptor structure: implications for function. Annu. Rev. Physiol.69, 201–220 (2007).
  • Sonoda J, Pei L, Evans RM. Nuclear receptors: decoding metabolic disease. FEBS Lett.582(1), 2–9 (2008).
  • Lange CA, Gioeli D, Hammes SR, Marker PC. Integration of rapid signaling events with steroid hormone receptor action in breast and prostate cancer. Annu. Rev. Physiol.69, 171–199 (2007).
  • Dehm SM, Tindall DJ. Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol. Endocrinol.21(12), 2855–2863 (2007).
  • Jemal A, Siegel R, Ward E et al. Cancer statistics, 2008. CA Cancer J. Clin.58(2), 71–96 (2008).
  • Huggins C, Hodges CV. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J. Urol.168(1), 9–12 (2002).
  • Denmeade SR, Isaacs JT. A history of prostate cancer treatment. Nat. Rev. Cancer2(5), 389–396 (2002).
  • Culig Z, Bartsch G. Androgen axis in prostate cancer. J. Cell Biochem.99(2), 373–381 (2006).
  • Debes JD, Tindall DJ. Mechanisms of androgen-refractory prostate cancer. N. Engl. J. Med.351(15), 1488–1490 (2004).
  • Dehm SM, Tindall DJ. Regulation of androgen receptor signaling in prostate cancer. Expert Rev. Anticancer Ther.5(1), 63–74 (2005).
  • Culig Z, Bartsch G, Hobisch A. Antiandrogens in prostate cancer endocrine therapy. Curr. Cancer Drug Targets4(5), 455–461 (2004).
  • Moul JW, Chodak G. Combination hormonal therapy: a reassessment within advanced prostate cancer. Prostate Cancer Prostatic Dis.7(Suppl. 1), S2–S7 (2004).
  • Levinson A, Nagler EA, Lowe FC. Approach to management of clinically localized prostate cancer in patients with human immunodeficiency virus. Urology65(1), 91–94 (2005).
  • Grossmann ME, Huang H, Tindall DJ. Androgen receptor signaling in androgen-refractory prostate cancer. J. Natl Cancer Inst.93(22), 1687–1697 (2001).
  • Scher HI, Sawyers CL. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J. Clin. Oncol.23(32), 8253–8261 (2005).
  • Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer1(1), 34–45 (2001).
  • Gao H, Ouyang X, Banach-Petrosky WA, Shen MM, Abate-Shen C. Emergence of androgen independence at early stages of prostate cancer progression in Nkx3.1; Pten mice. Cancer Res.66(16), 7929–7933 (2006).
  • Steinkamp MP, O’Mahony OA, Brogley M et al. Treatment-dependent androgen receptor mutations in prostate cancer exploit multiple mechanisms to evade therapy. Cancer Res.69(10), 4434–4442 (2009).
  • Chen G, Wang X, Zhang S et al. Androgen receptor mutants detected in recurrent prostate cancer exhibit diverse functional characteristics. Prostate63(4), 395–406 (2005).
  • Buchanan G, Irvine RA, Coetzee GA, Tilley WD. Contribution of the androgen receptor to prostate cancer predisposition and progression. Cancer Metastasis Rev.20(3–4), 207–223 (2001).
  • Locke JA, Guns ES, Lubik AA et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res.68(15), 6407–6415 (2008).
  • Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin. Cancer Res.11(13), 4653–4657 (2005).
  • Mohler JL, Gregory CW, Ford OH 3rd et al. The androgen axis in recurrent prostate cancer. Clin. Cancer Res.10(2), 440–448 (2004).
  • Mostaghel EA, Montgomery B, Nelson PS. Castration-resistant prostate cancer: targeting androgen metabolic pathways in recurrent disease. Urol. Oncol.27(3), 251–257 (2009).
  • Montgomery RB, Mostaghel EA, Vessella R et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res.68(11), 4447–4454 (2008).
  • Stanbrough M, Bubley GJ, Ross K et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res.66(5), 2815–2825 (2006).
  • Shen HC, Balk SP. Development of androgen receptor antagonists with promising activity in castration-resistant prostate cancer. Cancer Cell15(6), 461–463 (2009).
  • Attar RM, Takimoto CH, Gottardis MM. Castration-resistant prostate cancer: locking up the molecular escape routes. Clin. Cancer Res.15(10), 3251–3255 (2009).
  • Tindall DJ, Rittmaster RS. The rationale for inhibiting 5-reductase isoenzymes in the prevention and treatment of prostate cancer. J. Urol.179(4), 1235–1242 (2008).
  • Attard G, Reid AH, Olmos D, de Bono JS. Antitumor activity with CYP17 blockade indicates that castration-resistant prostate cancer frequently remains hormone driven. Cancer Res.69(12), 4937–4940 (2009).
  • Attard G, Reid AH, Yap TA et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol.26(28), 4563–4571 (2008).
  • Wilson JD. The role of 5-reduction in steroid hormone physiology. Reprod. Fertil. Dev.13(7–8), 673–678 (2001).
  • Andriole G, Bruchovsky N, Chung LW et al. Dihydrotestosterone and the prostate: the scientific rationale for 5-reductase inhibitors in the treatment of benign prostatic hyperplasia. J. Urol.172(4 Pt 1), 1399–1403 (2004).
  • Zhou ZX, Lane MV, Kemppainen JA, French FS, Wilson EM. Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol. Endocrinol.9(2), 208–218 (1995).
  • Wright AS, Thomas LN, Douglas RC, Lazier CB, Rittmaster RS. Relative potency of testosterone and dihydrotestosterone in preventing atrophy and apoptosis in the prostate of the castrated rat. J. Clin. Invest.98(11), 2558–2563 (1996).
  • Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev.18(3), 306–360 (1997).
  • Smith DF, Toft DO. Minireview: the intersection of steroid receptors with molecular chaperones: observations and questions. Mol. Endocrinol.22(10), 2229–2240 (2008).
  • Elbi C, Walker DA, Romero G et al. Molecular chaperones function as steroid receptor nuclear mobility factors. Proc. Natl Acad. Sci. USA101(9), 2876–2881 (2004).
  • Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev.28(7), 778–808 (2007).
  • Agoulnik IU, Weigel NL. Coactivator selective regulation of androgen receptor activity. Steroids74(8), 669–674 (2009).
  • Edwards J, Bartlett JM. The androgen receptor and signal-transduction pathways in hormone-refractory prostate cancer. Part 1: modifications to the androgen receptor. BJU Int.95(9), 1320–1326 (2005).
  • Mahajan NP, Liu Y, Majumder S et al. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc. Natl Acad. Sci. USA104(20), 8438–8443 (2007).
  • Guo Z, Dai B, Jiang T et al. Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell10(4), 309–319 (2006).
  • Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat. Rev. Mol. Cell Biol.5(9), 739–751 (2004).
  • Ravid T, Hochstrasser M. Diversity of degradation signals in the ubiquitin-proteasome system. Nat. Rev. Mol. Cell Biol.9(9), 679–690 (2008).
  • Lin HK, Yeh S, Kang HY, Chang C. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc. Natl Acad. Sci. USA98(13), 7200–7205 (2001).
  • Taneja SS, Ha S, Swenson NK et al. Cell-specific regulation of androgen receptor phosphorylation in vivo. J. Biol. Chem.280(49), 40916–40924 (2005).
  • Xin L, Teitell MA, Lawson DA, Kwon A, Mellinghoff IK, Witte ON. Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor. Proc. Natl Acad. Sci. USA103(20), 7789–7794 (2006).
  • Lin HK, Wang L, Hu YC, Altuwaijri S, Chang C. Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J.21(15), 4037–4048 (2002).
  • Xu K, Shimelis H, Linn DE et al. Regulation of androgen receptor transcriptional activity and specificity by RNF6-induced ubiquitination. Cancer Cell15(4), 270–282 (2009).
  • Heemers HV, Tindall DJ. Unraveling the complexities of androgen receptor signaling in prostate cancer cells. Cancer Cell15(4), 245–247 (2009).
  • Cheng J, Bawa T, Lee P, Gong L, Yeh ET. Role of desumoylation in the development of prostate cancer. Neoplasia8(8), 667–676 (2006).
  • Wu F, Mo YY. Ubiquitin-like protein modifications in prostate and breast cancer. Front. Biosci.12, 700–711 (2007).
  • Hay RT. SUMO-specific proteases: a twist in the tail. Trends Cell Biol.17(8), 370–376 (2007).
  • Mukhopadhyay D, Dasso M. Modification in reverse: the SUMO proteases. Trends Biochem. Sci.32(6), 286–295 (2007).
  • Poukka H, Aarnisalo P, Karvonen U, Palvimo JJ, Janne OA. Ubc9 interacts with the androgen receptor and activates receptor-dependent transcription. J. Biol. Chem.274(27), 19441–19446 (1999).
  • Poukka H, Karvonen U, Janne OA, Palvimo JJ. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc. Natl Acad. Sci. USA97(26), 14145–14150 (2000).
  • Callewaert L, Verrijdt G, Haelens A, Claessens F. Differential effect of small ubiquitin-like modifier (SUMO)-ylation of the androgen receptor in the control of cooperativity on selective versus canonical response elements. Mol. Endocrinol.18(6), 1438–1449 (2004).
  • Kaikkonen S, Jaaskelainen T, Karvonen U et al. SUMO-specific protease 1 (SENP1) reverses the hormone-augmented SUMOylation of androgen receptor and modulates gene responses in prostate cancer cells. Mol. Endocrinol.23(3), 292–307 (2009).
  • Bergerat JP, Ceraline J. Pleiotropic functional properties of androgen receptor mutants in prostate cancer. Hum. Mutat.30(2), 145–157 (2009).
  • Tepper CG, Boucher DL, Ryan PE et al. Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line. Cancer Res.62(22), 6606–6614 (2002).
  • Libertini SJ, Tepper CG, Rodriguez V, Asmuth DM, Kung HJ, Mudryj M. Evidence for calpain-mediated androgen receptor cleavage as a mechanism for androgen independence. Cancer Res.67(19), 9001–9005 (2007).
  • Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res.68(13), 5469–5477 (2008).
  • Hu R, Dunn TA, Wei S et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res.69(1), 16–22 (2009).
  • Guo Z, Yang X, Sun F et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res.69(6), 2305–2313 (2009).
  • Lapouge G, Marcias G, Erdmann E et al. Specific properties of a C-terminal truncated androgen receptor detected in hormone refractory prostate cancer. Adv. Exp. Med. Biol.617, 529–534 (2008).
  • Dehm SM, Regan KM, Schmidt LJ, Tindall DJ. Selective role of an NH2-terminal WxxLF motif for aberrant androgen receptor activation in androgen depletion independent prostate cancer cells. Cancer Res.67(20), 10067–10077 (2007).
  • Dehm SM, Tindall DJ. Ligand-independent androgen receptor activity is activation function-2-independent and resistant to antiandrogens in androgen refractory prostate cancer cells. J. Biol. Chem.281(38), 27882–27893 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.