56
Views
18
CrossRef citations to date
0
Altmetric
Review

Human TSH receptor ligands as pharmacological probes with potential clinical application

, &
Pages 669-679 | Published online: 10 Jan 2014

References

  • Vassart G, Dumont JE. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr. Rev.13, 596–611 (1992).
  • Dohan O, Carrasco N. Thyroidal iodide transport and thyroid cancer. Cancer Treat. Res.122, 221–236 (2004).
  • Duntas LH, Cooper DS. Review on the occasion of a decade of recombinant human TSH: prospects and novel uses. Thyroid18(5), 509–516 (2008).
  • Albino CC, Mesa CO Jr, Olandoski M et al. Recombinant human thyrotropin as adjuvant in the treatment of multinodular goiters with radioiodine. J. Clin. Endocrinol. Metab.90(5), 2775–2780 (2005).
  • Bassett JH, Williams GR. Critical role of the hypothalamic–pituitary–thyroid axis in bone. Bone43(3), 418–426 (2008).
  • Abe E, Marians RC, Yu W et al. TSH is a negative regulator of skeletal remodeling. Cell115(2), 151–162 (2003).
  • Sampath TK, Simic P, Sendak R et al. Thyroid-stimulating hormone restores bone volume, microarchitecture, and strength in aged ovariectomized rats. J. Bone Miner. Res.22(6), 849–859 (2007).
  • Marians RC, Ng L, Blair HC, Unger P, Graves PN, Davies TF. Defining thyrotropin-dependent and -independent steps of thyroid hormone synthesis by using thyrotropin receptor-null mice. Proc. Natl Acad. Sci. USA99(24), 15776–15781 (2002).
  • Hase H, Ando T, Eldeiry L et al. TNFα mediates the skeletal effects of thyroid-stimulating hormone. Proc. Natl Acad. Sci. USA103(34), 12849–12854 (2006).
  • Sun L, Vukicevic S, Baliram R et al. Intermittent recombinant TSH injections prevent ovariectomy-induced bone loss. Proc. Natl Acad. Sci. USA105(11), 4289–4294 (2008).
  • Bassett JH, Williams AJ, Murphy E et al. A lack of thyroid hormones rather than excess thyrotropin causes abnormal skeletal development in hypothyroidism. Mol. Endocrinol.22(2), 501–512 (2008).
  • Inoue M, Tawata M, Yokomori N, Endo T, Onaya T. Expression of thyrotropin receptor on clonal osteoblast-like rat osteosarcoma cells. Thyroid8(11), 1059–1064 (1998).
  • Davies TF, Ando T, Lin RY, Tomer Y, Latif R. Thyrotropin receptor-associated diseases: from adenomata to Graves disease. J. Clin. Invest.115(8), 1972–1983 (2005).
  • Duprez L, Parma J, Van Sande J et al. TSH receptor mutations and thyroid disease. Trends Endocrinol. Metab.9(4), 133–140 (1998).
  • Garrity JA, Bahn RS. Pathogenesis of graves ophthalmopathy: implications for prediction, prevention, and treatment. Am. J. Ophthalmol.142(1), 147–153 (2006).
  • Wiersinga WM, Prummel MF. Graves’ ophthalmopathy: a rational approach to treatment. Trends Endocrinol. Metab.13(7), 280–287 (2002).
  • Valyasevi RW, Erickson DZ, Harteneck DA et al. Differentiation of human orbital preadipocyte fibroblasts induces expression of functional thyrotropin receptor. J. Clin. Endocrinol. Metab.84(7), 2557–2562 (1999).
  • Bahn RS, Dutton CM, Natt N, Joba W, Spitzweg C, Heufelder AE. Thyrotropin receptor expression in Graves’ orbital adipose/connective tissues: potential autoantigen in Graves’ ophthalmopathy. J. Clin. Endocrinol. Metab.83(3), 998–1002 (1998).
  • Szkudlinski MW, Fremont V, Ronin C, Weintraub BD. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure–function relationships. Physiol. Rev.82(2), 473–502 (2002).
  • Latif R, Morshed SA, Zaidi M, Davies TF. The thyroid-stimulating hormone receptor: impact of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on multimerization, cleavage, and signaling. Endocrinol. Metab. Clin. North Am.38(2), 319–341 (2009).
  • Loosfelt H, Pichon C, Jolivet A et al. Two-subunit structure of the human thyrotropin receptor. Proc. Natl Acad. Sci. USA89, 3765–3769 (1992).
  • Chazenbalk GD, Tanaka K, Nagayama Y et al. Evidence that the thyrotropin receptor ectodomain contains not one, but two, cleavage sites. Endocrinology138(7), 2893–2899 (1997).
  • de Bernard S, Misrahi M, Huet JC et al. Sequential cleavage and excision of a segment of the thyrotropin receptor ectodomain. J. Biol. Chem.274(1), 101–107 (1999).
  • Rapoport B, McLachlan SM. The thyrotropin receptor in Graves’ disease. Thyroid17(10), 911–922 (2007).
  • Laugwitz KL, Allgeier A, Offermanns S et al. The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families. Proc. Natl Acad. Sci. USA93(1), 116–120 (1996).
  • Kero J, Ahmed K, Wettschureck N et al. Thyrocyte-specific Gq/G11 deficiency impairs thyroid function and prevents goiter development. J. Clin. Invest.117(9), 2399–2407 (2007).
  • Buch TR, Biebermann H, Kalwa H et al. G13-dependent activation of MAPK by thyrotropin. J. Biol. Chem.283(29), 20330–20341 (2008).
  • Vlaeminck-Guillem V, Ho SC, Rodien P, Vassart G, Costagliola S. Activation of the cAMP pathway by the TSH receptor involves switching of the ectodomain from a tethered inverse agonist to an agonist. Mol. Endocrinol.16(4), 736–746 (2002).
  • Zhang M, Tong KPT, Fremont V et al. The extracellular domain suppresses constitutive activity of the transmembrane domain of the human TSH receptor: implications for hormone-receptor interaction and antagonist design. Endocrinology141(9), 3514–3517 (2000)
  • Nakabayashi K, Matsumi H, Bhalla A et al. Thyrostimulin, a heterodimer of two new human glycoprotein hormone subunits, activates the thyroid-stimulating hormone receptor. J. Clin. Invest.109(11), 1445–1452 (2002).
  • Okada SL, Ellsworth JL, Durnam DM et al. A glycoprotein hormone expressed in corticotrophs exhibits unique binding properties on thyroid-stimulating hormone receptor. Mol. Endocrinol.20(2), 414–425 (2006).
  • Cole ES, Lee K, Lauziere K et al. Recombinant human thyroid stimulating hormone: development of a biotechnology product for detection of metastatic lesions of thyroid carcinoma. Biotechnology11(9), 1014–1024 (1993).
  • Szkudlinski MW, Thotakura NR, Bucci I et al. Purification and characterization of recombinant human thyrotropin (TSH) isoforms produced by Chinese hamster ovary cells: the role of sialylation and sulfation in TSH bioactivity. Endocrinology133(4), 1490–1503 (1993).
  • Szkudlinski MW. Recombinant human thyrotropins of the twenty-first century. Expert Opin. Pharmacother.5(12), 2435–2440 (2004).
  • Boretti FS, Sieber-Ruckstuhl NS, Favrot C, Lutz H, Hofmann-Lehmann R, Reusch CE. Evaluation of recombinant human thyroid-stimulating hormone to test thyroid function in dogs suspected of having hypothyroidism. Am. J. Vet. Res.67(12), 2012–2016 (2006).
  • Daminet S, Fifle L, Paradis M, Duchateau L, Moreau M. Use of recombinant human thyroid-stimulating hormone for thyrotropin stimulation test in healthy, hypothyroid and euthyroid sick dogs. Can. Vet. J.48(12), 1273–1279 (2007).
  • Colzani RM, Alex S, Fang SL, Braverman LE, Emerson CH. The effect of recombinant human thyrotropin (rhTSH) on thyroid function in mice and rats. Thyroid8(9), 797–801 (1998).
  • Szkudlinski MW, Grossmann M, Weintraub BD. Structure–function studies of human TSH – new advances in design of glycoprotein hormone analogs. Trends Endocrinol. Metab.7(8), 277–286 (1996).
  • Grossmann M, Wong R, Szkudlinski MW, Weintraub BD. Human thyroid-stimulating hormone (hTSH) subunit gene fusion produces hTSH with increased stability and serum half-life and compensates for mutagenesis-induced defects in subunit association. J. Biol. Chem.272(34), 21312–21316 (1997).
  • Fares FA, Yamabe S, Ben Menahem D, Pixley M, Hsueh AJ, Boime I. Conversion of thyrotropin heterodimer to a biologically active single-chain. Endocrinology139(5), 2459–2464 (1998).
  • Pierce JG, Parsons TF. Glycoprotein hormones: structure and function. Annu. Rev. Biochem.50, 465–495 (1981).
  • Fares FA, Levi F, Reznick AZ, Kraiem Z. Engineering a potential antagonist of human thyrotropin and thyroid-stimulating antibody. J. Biol. Chem.276(7), 4543–4548 (2001).
  • Azzam N, Bar-Shalom R, Kraiem Z, Fares F. Human thyrotropin (TSH) variants designed by site-directed mutagenesis block TSH activity in vitro and in vivo. Endocrinology146(6), 2845–2850 (2005).
  • Szkudlinski MW, Teh NG, Grossmann M, Tropea JE, Weintraub BD. Engineering human glycoprotein hormone superactive analogues. Bio. Technol.14(10), 1257–1263 (1996).
  • Grossmann M, Leitolf H, Weintraub BD, Szkudlinski MW. A rational design strategy for protein hormone superagonists. Nat. Biotechnol.16(9), 871–875 (1998).
  • Leitolf H, Tong KP, Grossmann M, Weintraub BD, Szkudlinski MW. Bioengineering of human thyrotropin superactive analogs by site-directed ‘lysine-scanning’ mutagenesis. Cooperative effects between peripheral loops. J. Biol. Chem.275(35), 27457–27465 (2000).
  • Mueller S, Kleinau G, Szkudlinski MW, Jaeschke H, Krause G, Paschke R. The superagonistic activity of bovine TSH and the human TR1401 TSH analog is determined by specific amino acids in the hinge region of the human TSH-receptor. J. Biol. Chem.284(24), 16317–16324 (2009).
  • Schott M, Scherbaum WA, Morgenthaler NG. Thyrotropin receptor autoantibodies in Graves’ disease. Trends Endocrinol. Metab.16(5), 243–248 (2005).
  • Rees SB, McLachlan SM, Furmaniak J. Autoantibodies to the thyrotropin receptor. Endocr. Rev.9(1), 106–121 (1988).
  • Ando T, Latif R, Pritsker A, Moran T, Nagayama Y, Davies TF. A monoclonal thyroid-stimulating antibody. J. Clin. Invest.110(11), 1667–1674 (2002).
  • Sanders J, Allen F, Jeffreys J et al. Characteristics of a monoclonal antibody to the thyrotropin receptor that acts as a powerful thyroid-stimulating autoantibody antagonist. Thyroid15(7), 672–682 (2005).
  • Sanders J, Jeffreys J, Depraetere H et al. Thyroid-stimulating monoclonal antibodies. Thyroid12(12), 1043–1050 (2002).
  • Costagliola S, Franssen JD, Bonomi M et al. Generation of a mouse monoclonal TSH receptor antibody with stimulating activity. Biochem. Biophys. Res. Commun.299(5), 891–896 (2002).
  • Huang GC, Page MJ, Nicholson LB, Collison KS, McGregor AM, Banga JP. The thyrotrophin hormone receptor of Graves’ disease: overexpression of the extracellular domain in insect cells using recombinant baculovirus, immunoaffinity purification and analysis of autoantibody binding. J. Mol. Endocrinol.10(2), 127–142 (1993).
  • Johnstone AP, Cridland JC, DaCosta CR, Harfst E, Shepherd PS. Monoclonal antibodies that recognize the native human thyrotropin receptor. Mol. Cell. Endocrinol.105(2), R1–R9 (1994).
  • Seetharamaiah GS, Wagle NM, Morris JC, Prabhakar BS. Generation and characterization of monoclonal antibodies to the human thyrotropin (TSH) receptor: antibodies can bind to discrete conformational or linear epitopes and block TSH binding. Endocrinology136(7), 2817–2824 (1995).
  • Costagliola S, Rodien P, Many MC, Ludgate M, Vassart G. Genetic immunization against the human thyrotropin receptor causes thyroiditis and allows production of monoclonal antibodies recognizing the native receptor. J. Immunol.160(3), 1458–1465 (1998).
  • Oda Y, Sanders J, Evans M et al. Epitope analysis of the human thyrotropin (TSH) receptor using monoclonal antibodies. Thyroid10(12), 1051–1059 (2000).
  • Gilbert JA, Gianoukakis AG, Salehi S et al. Monoclonal pathogenic antibodies to the thyroid-stimulating hormone receptor in Graves’ disease with potent thyroid-stimulating activity but differential blocking activity activate multiple signaling pathways. J. Immunol.176(8), 5084–5092 (2006).
  • Costagliola S, Bonomi M, Morgenthaler NG et al. Delineation of the discontinuous-conformational epitope of a monoclonal antibody displaying full in vitro and in vivo thyrotropin activity. Mol. Endocrinol.18(12), 3020–3034 (2004).
  • Akamizu T, Moriyama K, Miura M, Saijo M, Matsuda F, Nakao K. Characterization of recombinant monoclonal antithyrotropin receptor antibodies (TSHRAbs) derived from lymphocytes of patients with Graves’ disease: epitope and binding study of two stimulatory TSHRAbs. Endocrinology140(4), 1594–1601 (1999).
  • Sanders J, Evans M, Premawardhana LD et al. Human monoclonal thyroid stimulating autoantibody. Lancet362(9378), 126–128 (2003).
  • Moriyama K, Okuda J, Saijo M et al. Recombinant monoclonal thyrotropin-stimulation blocking antibody (TSBAb) established from peripheral lymphocytes of a hypothyroid patient with primary myxedema. J. Endocrinol. Invest.26(11), 1076–1080 (2003).
  • Chen CR, McLachlan SM, Rapoport B. Suppression of thyrotropin receptor constitutive activity by a monoclonal antibody with inverse agonist activity. Endocrinology148(5), 2375–2382 (2007).
  • Sanders J, Evans M, Betterle C et al. A human monoclonal autoantibody to the thyrotropin receptor with thyroid-stimulating blocking activity. Thyroid18(7), 735–746 (2008).
  • Bond RA, IJzerman AP. Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol. Sci.27(2), 92–96 (2006).
  • Chen CR, McLachlan SM, Rapoport B. Identification of key amino acid residues in a thyrotropin receptor monoclonal antibody epitope provides insight into its inverse agonist and antagonist properties. Endocrinology149(7), 3427–3434 (2008).
  • Chen CR, McLachlan SM, Rapoport B. A monoclonal antibody with TSH receptor inverse agonist and TSH antagonist activities binds to the receptor hinge region as well as to the leucine-rich domain. Endocrinology150(7), 3401–3408 (2009).
  • Latif R, Morshed SA, Zaidi M, Davies TF. The thyroid-stimulating hormone receptor: impact of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on multimerization, cleavage, and signaling. Endocrinol. Metab. Clin. North Am.38(2), 319–341 viii (2009).
  • Michalek K, Morshed SA, Latif R, Davies TF. TSH receptor autoantibodies. Autoimmun. Rev. DOI:10.1016/j.autrev.2009.03.012 (2009) (Epub ahead of print).
  • van Straten NC, Schoonus-Gerritsma GG, van Someren RG et al. The first orally active low molecular weight agonists for the LH receptor: thienopyr(im)idines with therapeutic potential for ovulation induction. Chembiochem.3(10), 1023–1026 (2002).
  • Heitman LH, Oosterom J, Bonger KM, Timmers CM, Wiegerinck PH, IJzerman AP. [3H]Org 43553, the first low-molecular-weight agonistic and allosteric radioligand for the human luteinizing hormone receptor. Mol. Pharmacol.73(2), 518–524 (2008).
  • Jorand-Lebrun C, Brondyk B, Lin J et al. Identification, synthesis, and biological evaluation of novel pyrazoles as low molecular weight luteinizing hormone receptor agonists. Bioorg. Med. Chem. Lett.17(7), 2080–2085 (2007).
  • Van Koppen CJ, Zaman GJ, Timmers CM et al. A signaling-selective, nanomolar potent allosteric low molecular weight agonist for the human luteinizing hormone receptor. Naunyn Schmiedebergs Arch. Pharmacol.378(5), 503–514 (2008).
  • Bonger KM, van den Berg RJ, Knijnenburg AD et al. Discovery of selective luteinizing hormone receptor agonists using the bivalent ligand method. ChemMedChem.4(7), 1189–1195 (2009).
  • Heitman LH, Narlawar R, de Vries H et al. Substituted terphenyl compounds as the first class of low molecular weight allosteric inhibitors of the luteinizing hormone receptor. J. Med. Chem.52(7), 2036–2042 (2009).
  • Guo T, Adang AE, Dolle RE et al. Small molecule biaryl FSH receptor agonists. Part 1: lead discovery via encoded combinatorial synthesis. Bioorg. Med. Chem. Lett.14(7), 1713–1716 (2004).
  • Guo T, Adang AE, Dong G et al. Small molecule biaryl FSH receptor agonists. Part 2: lead optimization via parallel synthesis. Bioorg. Med. Chem. Lett.14(7), 1717–1720 (2004).
  • Yanofsky SD, Shen ES, Holden F et al. Allosteric activation of the follicle-stimulating hormone (FSH) receptor by selective, nonpeptide agonists. J. Biol. Chem.281(19), 13226–13233 (2006).
  • MacLean D, Holden F, Davis AM et al. Agonists of the follicle stimulating hormone receptor from an encoded thiazolidinone library. J. Comb. Chem.6(2), 196–206 (2004).
  • Wrobel J, Jetter J, Kao W et al. 5-Alkylated thiazolidinones as follicle-stimulating hormone (FSH) receptor agonists. Bioorg. Med. Chem.14(16), 5729–5741 (2006).
  • Pelletier JC, Rogers J, Wrobel J, Perez MC, Shen ES. Preparation of highly substituted γ-lactam follicle stimulating hormone receptor agonists. Bioorg. Med. Chem.13(21), 5986–5995 (2005).
  • van Straten NC, van Berkel TH, Demont DR et al. Identification of substituted 6-amino-4-phenyltetrahydroquinoline derivatives: potent antagonists for the follicle-stimulating hormone receptor. J. Med. Chem.48(6), 1697–1700 (2005).
  • Wrobel J, Green D, Jetter J et al. Synthesis of (bis)sulfonic acid, (bis)benzamides as follicle-stimulating hormone (FSH) antagonists. Bioorg. Med. Chem.10(3), 639–656 (2002).
  • Arey BJ, Deecher DC, Shen ES et al. Identification and characterization of a selective, nonpeptide follicle-stimulating hormone receptor antagonist. Endocrinology143(10), 3822–3829 (2002).
  • van Straten NC, van Berkel TH, Demont DR et al. Identification of substituted 6-amino-4-phenyltetrahydroquinoline derivatives: potent antagonists for the follicle-stimulating hormone receptor. J. Med. Chem.48(6), 1697–1700 (2005).
  • Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol.3(9), 639–650 (2002).
  • Jaschke H, Neumann S, Moore S et al. A low molecular weight agonist signals by binding to the transmembrane domain of thyroid-stimulating hormone receptor (TSHR) and luteinizing hormone/chorionic gonadotropin receptor (LHCGR). J. Biol. Chem.281(15), 9841–9844 (2006).
  • Moore S, Jaeschke H, Kleinau G et al. Evaluation of small-molecule modulators of the luteinizing hormone/choriogonadotropin and thyroid stimulating hormone receptors: structure–activity relationships and selective binding patterns. J. Med. Chem.49(13), 3888–3896 (2006).
  • Neumann S, Kleinau G, Costanzi S et al. A low-molecular-weight antagonist for the human thyrotropin receptor with therapeutic potential for hyperthyroidism. Endocrinology149(12), 5945–5950 (2008).
  • Inglese J, Auld DS, Jadhav A et al. Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc. Natl Acad. Sci. USA103(31), 11473–11478 (2006).
  • Titus S, Neumann S, Zheng W et al. Quantitative high-throughput screening using a live-cell cAMP assay identifies small-molecule agonists of the TSH receptor. J. Biomol. Screen13(2), 120–127 (2008).
  • Neumann S, Huang W, Titus S et al. Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice. Proc. Natl Acad. Sci. USA106(30), 12471–12476 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.