20
Views
0
CrossRef citations to date
0
Altmetric
Drug Profile

Combination of nateglinide with thiazolidinediones in Type 2 diabetes

&
Pages 537-552 | Published online: 10 Jan 2014

References

  • Katsilambros N, Tentolouris N. Type 2 diabetes: an overview. In: Textbook of Diabetes (Volume 1 [3rd edition]). Pickup JC, Gareth W (Eds). Blackwell Science Ltd, Oxford, UK 4.1–4.19 (2003).
  • Szoke E, Gerich JE. Role of impaired insulin secretion and insulin resistance in the pathogenesis of Type 2 diabetes mellitus. Compr. Ther.31(2), 106–112 (2005).
  • King H, Aubert RE, Herman WH. Global burden of diabetes 1995–2025: prevalence, numerical estimates and projections. Diabetes Care21(9), 1414–1431 (1998).
  • Reimann M, Bonifacio E, Solimena M et al. An update on preventive and regenerative therapies in diabetes mellitus. Pharmacol. Ther.121(3), 317–331 (2009).
  • Chiasson JL, Brindisi MC, Rabasa-Lhoret R. The prevention of Type 2 diabetes: what is the evidence? Minerva Endocrinol.30(3), 179–191 (2005).
  • Intensive blood-glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with Type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet352(9131), 837–853 (1998).
  • Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in Type 2 diabetes. N. Engl. J. Med.359(15), 1577–1589 (2008).
  • Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with Type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). JAMA281(21), 2005–2012 (1999).
  • Fonseca VA, Kulkarni K. Management of Type 2 diabetes: oral agents, insulin, and injectables. J. Am. Diet Assoc.108(4), S29–S33 (2008).
  • Davidson JA. Treatment of the patient with diabetes: importance of maintaining target HbA(1c) levels. Curr. Med. Res. Opin.20(12), 1919–1927 (2004).
  • Bolen S, Feldman L, Vassy J et al. Systematic review: comparative effectiveness and safety of oral medications for Type 2 diabetes mellitus. Ann. Intern. Med.147(6), 386–399 (2007).
  • Van Gaal LF, De Leeuw IH. Rationale and options for combination therapy in the treatment of Type 2 diabetes. Diabetologia46(1), 44–50 (2003).
  • Tentolouris N, Voulgari C, Katsilambros N. A review of nateglinide in the management of patients with Type 2 diabetes. Vasc. Health Risk Manag.3(6), 797–807 (2007).
  • Sato Y, Nishikawa M, Shinkai H et al. Possibility of ideal blood glucose control by a new oral hypoglycemic agent, N-[(trans-4-isopropylcyclohexyl)-carbonyl]-D-phenylalanine (A-4166), and its stimulatory effect on insulin secretion in animals. Diabetes Res. Clin. Prac.12(1), 53–60 (1991).
  • McClenaghan NH, Flatt PR. Physiological and pharmalogical regulation of insulin release: insights offered through exploitation of insulin-secreting cell lines. Diab. Obes. Metab.1(3), 1–14 (1999).
  • Hu S. Interaction of nateglinide with K(ATP) channel in β cells underlies its unique insulinotropic action. Eur. J. Pharmacol.442(1–2), 163–171 (2002).
  • Uto Y, Teno S, Iwamoto Y et al. Improvement of glucose tolerance by nateglinide occurs through enhancement of early phase insulin secretion. Metabolism51(1), 20–24 (2002).
  • Laghmich A, Ladrière L, Malaisse-Lagae F et al. Long-term effect of glibenclamide and nateglinide upon pancreatic islet cell function in normal and diabetic rats. Pharmacol. Res.40(6), 475–482 (1999).
  • Ball AJ, Flatt PR, McClenaghan NH. Acute and long-term effects of nateglinide on insulin secretory pathways. Br. J. Pharmacol.142(2), 367–373 (2004).
  • Hu S, Wang S, Fanelli B et al. Pancreatic β-cell KATP channel activity and membrane binding studies with nateglinide: a comparison with sulfonylureas and repaglinide. J. Pharmacol. Exp. Ther.293(2), 444–452 (2000).
  • Bokvist K, Hou M, Bushard K et al. Selectivity of prandial glucose regulators: nateglinide, but not repaglinide, accelerates exocytosis in rat pancreatic α-cells. Eur. J. Pharmacol.386(1), 105–111 (1999).
  • Ceriello A. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes54(1), 1–7 (2005).
  • Davies MJ. Post-prandial hyperglycemia and prevention of cardiovascular disease. Diabet. Med.22(Suppl.1), 1–21 (2005).
  • Maedler K, Carr RD, Bosco D et al. Sulfonylurea induced β-cell apoptosis in cultured human islets. J. Clin. Endocrinol. Metab.90(1), 501–506 (2005).
  • Proks P, Ashcroft FM. Modelling K(ATP) channel gating and its regulation. Prog. Biophys. Mol. Biol.99(1), 7–19 (2009).
  • Quast U, Stephan D, Bieger S, Ulrich R. The impact of ATP sensitive K channel subtype selectivity of insulin secretagogues for the coronary vasculature and the myocardium. Diabetes53(Suppl. 3), S156–S164 (2004).
  • Chachin M, Yamada M, Fujita A et al. Nateglinide, a D-phenylalanine derivative lacking either a sulfonylurea or a benzamido moiety, specifically inhibits pancreatic β-cell-type KATP channels. J. Pharmacol. Exp. Ther.304(3), 1025–1032 (2003).
  • McLeod JF. Clinical pharmacokinetics of nateglinide: a rapidly absorbed, short-acting insulinotropic agent. Clin. Pharmacokinet.43(2), 97–120 (2004).
  • Luzio SD, Anderson DM, Owens R. Effects of timing on administration and meal composition on the pharmacokinetic and pharmacodynamic characteristics of the short-acting oral hypoglycemic agent nateglinide in healthy subjects. J. Clin. Endocrinol. Metab.86(10), 4874–4880 (2001).
  • Keilson L, Mather S, Walter YH et al. Synergistic effects of nateglinide and meal administration on insulin secretion in patients with Type 2 diabetes mellitus. J. Clin. Endocrinol. Metab.85(3), 1081–1086 (2000).
  • Karara AH, Dunning BE, McLeod JF. The effect of food on the oral bioavailability and the pharmacodynamic actions of the insulinotropic agent nateglinide in healthy subjects. J. Clin. Pharmacol.39(2), 172–179 (1999).
  • Dunning BE, Gutierrez C. Pharmacokinetics of nateglinide and repaglinide in Cynomolgus monkeys. Diabetes48, (1999) (Abstract 0104).
  • Takesada H, Matsuda K, Ohtake R et al. Structure determination of metabolites isolated from urine and bile after administration of AY4166, a novel D phenylalanine-derivative hypoglycemic agent. Bioorg. Med. Chem.4(10), 1771–1781 (1996).
  • Weaver ML, Orwig BA, Rodriguez LC et al. Pharmacokinetics and metabolism of nateglinide in humans. Drug Metab. Dispos.29(4), 415–421 (2001).
  • Persaud SJ, Howell SL. The biosynthesis and secretion of insulin. In: Textbook of diabetes (Volume 1 [3rd Edition]). Pickup JC, Gareth W (Eds). . Blackwell Science Ltd, Oxford, UK 13.1–13.17 (2003).
  • Uchino H, Niwa M, Shimizu T, Nishiyama K, Kawamori R. Impairment of early insulin response after glucose load, rather than insulin resistance, is responsible for postprandial hyperglycemia seen in obese Type 2 diabetes: assessment using nateglinide, a new insulin secretagogue. Endocr. J.47(5), 639–641 (2000).
  • Whitelaw DC, Clark PM, Smith JM, Nattrass M. Effects of the new oral hypoglycemic agent nateglinide on insulin secretion in Type 2 diabetes mellitus. Diabet. Med.17(3), 225–229 (2000).
  • Carroll MF, Izard A, Riboni K, Burge MR, Schade DS. Control of postprandial hyperglycemia. Optimal use of short-acting insulin secretagogues. Diabetes Care25(12), 2147–2152 (2002).
  • Carroll MF, Gutierrez A, Castro M, Tsewang D, Schade D. Targeting postprandial hyperglycemia: a comparative study of insulinotropic agents in Type 2 diabetes. J. Clin. Endocrinol. Metab.88(11), 5248–5254 (2003).
  • Barnett AH, Anderson DM, Shelley S et al. A placebo-controlled crossover study comparing the effects of nateglinide and glibenclamide on postprandial hyperglycemia and hyperinsulinaemia in patients with Type 2 diabetes. Diabetes Obes. Metab.6(2), 104–113 (2004).
  • Lebovitz H. Insulin secretagogues: sulfonyrueas, repaglinide, and nateglinide. In: ADA’s Therapy for Diabetes Mellitus and Related Disorders. 164–175 (2004).
  • Horton ES, Clinkingbeard C, Gatlin M, Foley J, Mallows S, Shen S. Nateglinide alone and in combination with metformin improves glycemic control by reducing mealtime glucose levels in Type 2 diabetes. Diabetes Care23(11), 1660–1665 (2000).
  • Hirschberg Y, Karara AH, Pietri AO, McLeod JF. Improved control of mealtime glucose excursions with coadministration of nateglinide and metformin. Diabetes Care23(3), 349–353 (2000).
  • Rosenstock J, Gatlin MR, Shen SG, Foley JE. Combination therapy with nateglinide and a thiazolidinedione improves glycemic control in Type 2 diabetes. Diabetes Care25(9), 1529–1533 (2002).
  • Horton ES, Foley JE, Shen SG, Baron MA. Efficacy and tolerability of initial combination therapy with nateglinide and metformin in treatment-naive patients with Type 2 diabetes. Curr. Med. Res. Opin.20(6), 883–889 (2004).
  • Rosenstock J, Hassman DR, Madder RD et al. Repaglinide versus Nateglinide monotherapy. A randomized multicenter study. Diabetes Care27(6), 1265–1270 (2004).
  • Dashora UK, Sibal L, Ashwell SG, Home PD. Insulin glargine in combination with nateglinide in people with Type 2 diabetes: a randomized placebo-controlled trial. Diabet. Med.24(4), 34434–34439 (2007).
  • Schwarz SL, Gerich JE, Marcellari A, Jean-Louis L, Purkayastha D, Baron MA. Nateglinide, alone or in combination with metformin, is effective and well tolerated in treatment-naive elderly patients with Type 2 diabetes. Diabetes Obes. Metab.10(8), 652–660 (2008).
  • Marre M, Van Gaal L, Usadel KH, Ball M, Whatmough I, Guitard C. Nateglinide improves glycemic control when added to metformin monotherapy: results of a randomized trial with Type 2 diabetes patients. Diabetes Obes. Metab.4(3), 177–186 (2002).
  • Ristic S, Collober-Maugeais C, Pacer E, Cressier F. Comparison of nateglinide and gliclazide in combination with metformin, for treatment of patients with Type 2 diabetes mellitus inadequately controlled on maximum doses of metformin alone. Diabet. Med.23(7), 757–762 (2006).
  • Ristic S, Collober-Maugeais C, Cressier F, Tang P, Pecher E. Nateglinide or gliclazide in combination with metformin for treatment of patients with Type 2 diabetes mellitus inadequately controlled on maximum doses of metformin alone: 1-year trial results. Diabetes Obes. Metab.9(4), 506–511 (2007).
  • Gerich J, Raskin P, Jean-Louis L et al. PRESERVE-β: two-year efficacy and safety of initial combination therapy with nateglinide or glyburide plus metformin. Diabetes Care28(9), 2093–2099 (2005).
  • Derosa G, D’Angelo A, Fogari E et al. Nateglinide and glibenclamide metabolic effects in naive Type 2 diabetic patients treated with metformin. J. Clin. Pharm. Ther.34(1), 13–23 (2009).
  • Derosa G, D’Angelo A, Fogari E et al. Effects of nateglinide and glibenclamide on prothrombotic factors in naive Type 2 diabetic patients treated with metformin: a 1-year, double-blind, randomized clinical trial. Intern. Med.46(22), 1837–1846 (2007).
  • Raskin P, Klaff L, McGill J et al. Repaglinide vs. Nateglinide Metformin Combination Study Group. Efficacy and safety of combination therapy: repaglinide plus metformin versus nateglinide plus metformin. Diabetes Care26(7), 2063–2068 (2000).
  • Fontbonne AE, Eschwege F, Cambien JL et al. Hypertriglyceridaemia as a risk factor of coronary heart disease mortality in subjects with impaired glucose toleranceor diabetes. Results from the 11-year follow-up of the Paris Prospective Study. Diabetologia32(5), 300–304 (1989).
  • Ai M, Tanaka A, Kyoko O, Shomokado K. Favourable effects of early insulin secretion by nateglinide on postprandial hyperlipidemia in patients with Type 2 diabetes. Diabetes Care29(5), 1180 (2006).
  • Mori Y, Kuriyama G, Tajima N. Effects of nateglinide on the elevation of postprandial remnant-like particle triglyceride levels in Japanese patients with Type 2 diabetes assessment by meal tolerance test. Endocrine25(3), 203–206 (2004).
  • Kitahara Y, Miura K, Kajioka T, Mine T. Suppressive effect of nateglinide on high fat diet-induced hepatic accumulation of triglycerides in Goto-Kakizaki rats. Presented at the 65th Annual Scientific Session of the American Diabetes Association. San Diego, CA, USA (2005).
  • Dimitriadis G, Boutati E, Lambadiari V et al. Restoration of early insulin secretion after a meal in Type 2 diabetes: effects on lipid and glucose Metabolism Eur. J. Clin. Invest.34(7), 490–497 (2004).
  • Tentolouris N, Boutati E, Karambakalis N et al. Acute Nateglinide administration in subjects with Type 2 diabetes: effects on postprandial metabolism, coagulation, and fibrinolysis. Nutr. Metab. Cardiovasc. Dis.16(1), 6–12 (2005).
  • Shimabukuro M, Higa N, Takasu N et al. A single dose of nateglinide improves post-challenge glucose metabolism and endothelial dysfunction in Type 2 diabetic patients. Diabet. Med.21(9), 983–986 (2004).
  • Salas M, Ward A, Caro J. Health and economic effects of adding nateglinide to metformin to achieve dual control of glycosylated hemoglobin and postprandial glucose levels in a model of Type 2 diabetes mellitus. Clin. Ther.24(10), 1690–1705 (2002).
  • Savage DB. PPAR γ as a metabolic regulator: insights from genomics and pharmacology. Expert Rev. Mol. Med.7(1), 1–16 (2005).
  • Berger J, Moller DE. The mechanisms of action of PPARs. Annu. Rev. Med.53, 409–435 (2002).
  • Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science294(5548), 1866–1670 (2001).
  • Willson TM, Lambert MH, Kliewer SA. Peroxisome proliferator-activated receptor g and metabolic disease. Annu. Rev. Biochem.70, 341–367 (2001).
  • Berger JP, Petro AE, Macnaul KL et al. Distinct properties and advantages of a novel peroxisome proliferator-activated protein-gamma selective modulator. Mol. Endocrinol.17(4), 662–676 (2003).
  • Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm. Res.49(10), 497–505 (2000).
  • Barbier O, Torra IP, Duguay Y et al. Pleiotropic actions of peroxisome proliferatoractivated receptors in lipid metabolism and atherosclerosis. Arterioscler. Thromb. Vasc. Biol.22(5), 717–726 (2002).
  • Duez H, Chao YS, Hernandez M et al. Reduction of atherosclerosis by the peroxisome proliferator-activated receptor alpha agonist fenofibrate in mice. J. Biol. Chem.277(50), 48051–48057 (2002).
  • Rubins HB, Robins SJ, Collins D et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. N. Engl. J. Med.341(6), 410–418 (1999).
  • Effect of fenofibrate on progression of coronary-artery disease in Type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet357(9260), 905–910 (2001).
  • Okuno A, Tamemoto H, Tobe K et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J. Clin. Invest.101(6), 1354–1361 (1998).
  • Miyazaki Y, Mahankali A, Matsuda M et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in Type 2 diabetic patients. J. Clin. Endocrinol. Metab.87(6), 2784–2791 (2002).
  • Bajaj M, Suraamornkul S, Piper P et al. Decreased plasma adiponectin concentrations are closely related to hepatic fat content and hepatic insulin resistance in pioglitazone-treated Type 2 diabetic patients. J. Clin. Endocrinol. Metab.89(1), 200–206 (2004).
  • Mayerson AB, Hundal RS, Dufour S et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with Type 2 diabetes. Diabetes51(3), 797–802 (2002).
  • Bajaj M, Suraamornkul S, Pratipanawatr T et al. Pioglitazone reduces hepatic fat content and augments splanchnic glucose uptake in patients with Type 2 diabetes. Diabetes52(6), 1364–1370 (2003).
  • Tiikkainen M, Häkkinen AM, Korsheninnikova E, Nyman T, Mäkimattila S, Yki-Järvinen H. Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance and gene expression in adipose tissue in patients with Type 2 diabetes. Diabetes53(8), 2169–2176 (2004).
  • Sutinen J, Häkkinen A-M, Westerbacka J et al. Rosiglitazone in the treatment of HAART-associated lipodystrophy – a randomized double-blind placebo-controlled study. Antivir. Ther.8(3), 199–207 (2003).
  • Matsuda M, Shimomura I, Sata M et al. Role of adiponectin in preventing vascular stenosis: the missing link of adipo-vascular axis. J. Biol. Chem.277(40), 37487–37491 (2002).
  • Peraldi P, Spiegelman B. TNF-α and insulin resistance: summary and future prospects. Mol. Cell. Biochem.182(1–2), 169–175 (1998).
  • Steppan CM, Bailey ST, Bhat S et al. The hormone resistin links obesity to diabetes. Nature409(6818), 307–312 (2001).
  • Masuzaki H, Paterson J, Shinyama H et al. A transgenic model of visceral obesity and the metabolic syndrome. Science294(5549), 2166–2170 (2001).
  • Tsapogas P. Treatment of diabetes with pills. Thiazolidinediones. In: Diabetes in Clinical Practice. Questions and Answers from Case Studies. Katsilambros N, Diakoumopoulou E, Ioannidis I et al. (Eds). Wiley Publishers, West Sussex, UK 341–371 (2006).
  • Kirchheiner J, Roots I, Goldammer M et al. Effect of genetic polymorphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance. Clin. Pharmacokinet.44(12), 1209–1225 (2005).
  • Wallace TM, Matthews DR. The drug treatment of Type 2 diabetes. Oral agents. Thiazolidinediones. In: Textbook of Diabetes (Volume 2). Pickup JC, Williams G (Ed.) Blackwell Publishing, MA, USA 45.11–45.13 (2006).
  • Miyazaki Y, Glass L, Triplitt C et al. Effect of rosiglitazone on glucose and nonesterified fatty acid metabolism in Type 2 diabetic patients. Diabetologia44(12), 2210–2219 (2001).
  • Barnett AH. Redefining the role of thiazolidinediones in the management of Type 2 diabetes. Vasc. Health Risk Manag.5(1), 141–151 (2009).
  • Acharya D, Falik R. Cardiovascular effects of thiazolidinediones: a review of the literature. South. Med. J.102(1), 51–56 (2009).
  • Mikhail N. Combination therapy with DPP-4 inhibitors and pioglitazone in Type 2 diabetes: theoretical consideration and therapeutic potential. Vasc. Health Risk Manag.4(6), 1221–1227 (2008).
  • Mikhail N. Incretin mimetics and dipeptidyl peptidase 4 inhibitors in clinical trials for the treatment of Type 2 diabetes. Expert Opin. Investig. Drugs17(6), 845–853 (2008).
  • Viberti G, Khan SE, Greene DA et al. A Diabetes Outcome Progression Trial (ADOPT). An international multicenter study of the comparative efficacy of rosiglitazone, glyburide, and metformin in recently diagnosed Type 2 diabetes. Diabetes Care25(10), 1737–1743 (2002).
  • Dormandy JA, Charbonnel B, Eckland EJA et al. Secondary prevention of macrovascular events in patients with Type 2 diabetes: a randomized trial of pioglitazone: the PROactive Study (Prospective Pioglitazone Clinical Trial in Macrovascular Events). Lancet366(9493), 1279–1289 (2005).
  • Zinman B, Gerich J, Buse JB et al. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with Type 2 diabetes (LEAD-4 Met-TZD). Diabetes Care32(7), 1224–1230 (2009).
  • Fonseca V, Grunberger G, Shen S, Foley JE. Addition of nateglinide to rosiglitazone monotherapy suppresses mealtime hyperglycemia and improves overall glycemic control. Diabetes Care26(6), 1685–1690 (2003).
  • El-Batran SA, Abdel-Salam OM, Nofal SM, Baiuomy AR. Effect of rosiglitazone and nateglinide on serum glucose and lipid profile alone or in combination with the biguanide metformin in diabetic rats. Pharmacol. Res.53(1), 69–74 (2006).
  • Zawalich WS, Tesz G, Zawalich KC. Contrasting effects of nateglinide and rosiglitazone on insulin secretion and µ activation. Metabolism52(11), 1393–1399 (2003).
  • Chia CW, Egan JM. Incretin-based therapies in Type 2 diabetes mellitus. J. Clin. Endocrinol. Metab.93(10), 3703–3716 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.