106
Views
92
CrossRef citations to date
0
Altmetric
Perspective

Diabetes is a proinflammatory state: a translational perspective

, &
Pages 19-28 | Published online: 10 Jan 2014

References

  • American College of Endocrinology. American College of Endocrinology consensus statement on guidelines for glycemic control. Endocr. Pract.8(Suppl. 1), 5–11 (2002).
  • Narayan KM, Boyle JP, Thompson TJ et al. Lifetime risk for diabetes mellitus in the United States. JAMA290, 1884–1890 (2003).
  • Centers for Disease Control and Prevention. National Diabetes Fact Sheet: General Information and National Estimates on Diabetes in the United States, 2005. US Dept of Health and Human Services, GA, USA 2005.
  • DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care14, 173–194 (1991).
  • Vaccaro O, Eberly LE, Neaton JD et al. Impact of diabetes and previous myocardial infarction on long-term survival: 25-year mortality follow-up of primary screenees of the Multiple Risk Factor Intervention Trial. Arch. Intern. Med.164, 1438–1443 (2004).
  • Haffner SM, Lehto S, Ronnemaa T et al. Mortality from coronary heart disease in subjects with Type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med.339, 229–234 (1998).
  • Barrett-Connor EL, Cohn BA, Wingard DL, Edelstein SL. Why is diabetes mellitus a stronger risk factor for fatal ischemic heart disease in women than in men? The Rancho Bernardo Study. JAMA265, 627–631 (1991).
  • Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with Type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med.339, 229–234 (1998).
  • Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA241, 2035–2038 (1979).
  • Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care16, 434–444 (1993).
  • Després JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature444(7121), 881–887 (2006).
  • Packard RR, Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin. Chem.54(1), 24–38 (2008).
  • Hansson GK, Libby P, Schönbeck U, Yan ZQ. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ. Res.91(4), 281–291 (2002).
  • Devaraj S, Singh U, Jialal I. The evolving role of C-reactive protein in atherothrombosis. Clin. Chem.55(2), 229–238 (2009).
  • Ridker PM. C-reactive protein and the prediction of cardiovascular events among those at intermediate risk: moving an inflammatory hypothesis toward consensus. J. Am. Coll. Cardiol.49(21), 2129–2138 (2007).
  • Pickup JC, Mattock MB, Chusney GD et al. NIDDM as a disease of the innate immune system – association of acute-phase reactants and interleukin-6 with metabolic syndrome. Diabetologia40, 1286–129 (1997).
  • Devaraj S, Jialal I. α tocopherol supplementation decreases serum C-reactive protein and monocyte interleukin-6 levels in normal volunteers and Type 2 diabetic patients. Free Radic. Biol. Med.29(8), 790–792 (2000).
  • Ford ES. The metabolic syndrome and C-reactive protein, fibrinogen, and leukocyte count: findings from the Third National Health and Nutrition Examination. Surv. Atheroscler.168(2), 351–358 (2003).
  • Tan KC, Chow WS, Tam SC et al. Atorvastatin lowers C-reactive protein and improves endothelium-dependent vasodilation in Type 2 diabetes mellitus. J. Clin. Endocrinol. Metab.87(2), 563–568 (2002).
  • Jager A, van Hinsbergh VW, Kostense PJ et al. von Willebrand factor, C-reactive protein, and 5-year mortality in diabetic and nondiabetic subjects: the Hoorn Study. Arterioscler. Thromb. Vasc. Biol.19(12), 3071–3078 (1999).
  • Devaraj S, Singh U, Jialal I. Human C-reactive protein and the metabolic syndrome. Curr. Opin. Lipidol.20(3), 182–189 (2009).
  • Folsom AR, Aleksic N, Catellier D et al. C-reactive protein and incident coronary heart disease in the Atherosclerosis Risk In Communities (ARIC) study. Am. Heart J.144(2), 233–238 (2002).
  • Tracy RP, Lemaitre RN, Psaty BM et al. Relationship of C-reactive protein to risk of cardiovascular disease in the elderly. Results from the Cardiovascular Health Study and the Rural Health Promotion Project. Arterioscler. Thromb. Vasc. Biol.17(6), 1121–1127 (1997).
  • Bermudez EA, Rifai N, Buring J et al. Interrelationships among circulating interleukin-6, C-reactive protein, and traditional cardiovascular risk factors in women. Arterioscler. Thromb. Vasc. Biol.22(10), 1668–1673 (2002).
  • Freeman DJ, Norrie J, Caslake MJ et al; West of Scotland Coronary Prevention Study. C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study. Diabetes51(5), 1596–1600 (2002).
  • Thorand B, Lowel H, Schneider A et al. C-reactive protein as a predictor for incident diabetes mellitus among middle-aged men: results from the MONICA Augsburg cohort study, 1984–1998. Arch. Intern. Med.163(1), 93–99 (2003).
  • Pradhan AD, Manson JE, Rifai N et al. C-reactive protein, interleukin 6, and risk of developing Type 2 diabetes mellitus. JAMA286(3), 327–334 (2001).
  • Muntner P, He J, Chen J et al. Prevalence of non-traditional cardiovascular disease risk factors among persons with impaired fasting glucose, impaired glucose tolerance, diabetes, and the metabolic syndrome: analysis of the Third National Health and Nutrition Examination Survey (NHANES III). Ann. Epidemiol.14(9), 686–695 (2004).
  • Hanley AJ, Festa A, D’Agostino RB Jr et al. Metabolic and inflammation variable clusters and prediction of Type 2 diabetes: factor analysis using directly measured insulin sensitivity. Diabetes53(7), 1773–1781 (2004).
  • Devaraj S, Glaser N, Griffen S et al. Increased monocytic activity and biomarkers of inflammation in patients with Type 1 diabetes. Diabetes55(3), 774–779. (2006).
  • Schalkwijk CG, Poland DC, van Dijk W et al. Plasma concentration of C-reactive protein is increased in Type I diabetic patients without clinical macroangiopathy and correlates with markers of endothelial dysfunction: evidence for chronic inflammation. Diabetologia42(3), 351–357 (1999).
  • Schram MT, Chaturvedi N, Schalkwijk CG, Fuller JH, Stehouwer CD; EURODIAB Prospective Complications Study Group. Markers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in Type 1 diabetes – the EURODIAB Prospective Complications Study. Diabetologia48(2), 370–378 (2005).
  • Hayaishi-Okano R, Yamasaki Y, Katakami N et al. Elevated C-reactive protein associates with early-stage carotid atherosclerosis in young subjects with Type 1 diabetes. Diabetes Care25(8), 1432–1438 (2002).
  • Moreno PR, Murcia AM, Palacios IF et al. Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation102(18), 2180–2184 (2000).
  • Burke AP, Kolodgie FD, Zieske A et al. Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler. Thromb. Vasc. Biol.24(7), 1266–1271 (2004).
  • Rousselot DB, Bastard JP, Jaudon MC, Delattre J. Consequences of the diabetic status on the oxidant/antioxidant balance. Diabetes Metab.26, 163–176 (2000).
  • Kitahara M, Eyre H, Lynch R et al. Metabolic activity of diabetic monocytes. Diabetes29, 251–256 (1980).
  • Hill H, Hogan N, Rallison M et al. Functional and metabolic abnormalities of diabetic monocytes. Adv. Expt. Med. Biol.69, 621–627 (1980).
  • Devaraj S, Cheung AT, Jialal I et al. Evidence of increased inflammation and microcirculatory abnormalities in patients with Type 1 diabetes and their role in microvascular complications. Diabetes56(11), 2790–2796 (2007).
  • Devaraj S, Glaser N, Griffen S et al. Increased monocytic activity and biomarkers of inflammation in patients with Type 1 diabetes. Diabetes55(3), 774–779 (2006).
  • Fuller CJ, Agil A, Lender D, Jialal I. Superoxide production and LDL oxidation by diabetic neutrophils. J. Diabetes Complications10(4), 206–210 (1996).
  • Devaraj S, Jialal I. Low-density lipoprotein postsecretory modification, monocyte function, and circulating adhesion molecules in Type 2 diabetic patients with and without macrovascular complications: the effect of α-tocopherol supplementation. Circulation102(2), 191–196 (2000).
  • Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T. Sustained effects of interleukin-1-receptor antagonist treatment in Type 2 diabetes mellitus. Diabetes Care32(9), 1663–1668 (2009).
  • Desfaits A, Serri O, Renier G. Normalization of plasma lipid peroxides, monocyte adhesion and TNF production in NIDDM patients after gliclazide treatment. Diabetes Care21, 487–491 (1998).
  • Ross R. Cell biology of atherosclerosis. Ann. Rev. Physiol.57, 791–804 (1995).
  • Kim J, Berliner J, Natarajan R et al. Evidence that glucose increases monocyte binding to human aortic endothelial cells. Diabetes43, 1103–1107 (1994).
  • Carantoni M, Abbasi F, Chu L et al. Adherence of mononuclear cells to endothelium in vitro is increased in patients with NIDDM. Diabetes Care20, 1462–1465 (1997).
  • Hoogerbrugge N, Verkerk A, Jacobs M et al. Hypertriglyceridemia enhances monocyte binding to endothelial cells in NIDDM. Diabetes Care3, 1122–1124 (1997).
  • Hwang S, Ballantyne CM, Sharrett AR et al. Circulating adhesion molecules VCAM-1–1, ICAM-1–1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) Study. Circulation96, 4219–4225 (1997).
  • Rohde LE, Lee RT, Jamocochian M et al. Circulating CAMs are correlated with ultrasound measurement of carotid atherosclerosis. Arterioscler. Thromb. Vasc. Biol.18, 1765–1770 (1998).
  • Ridker PM, Hennekens CH, Roitman JB et al. Plasma concentration of soluble ICAM-1 and risks of future MI in apparently healthy men. Lancet351, 88–92 (1998).
  • Albertini JP, Valensi P, Lormeau B et al. Elevated concentrations of soluble E-selectin and vascular cell adhesion molecule-1 in NIDDM. Effect of intensive insulin treatment. Diabetes Care21, 1008–1013 (1998).
  • Fasching P, Waldhausl W, Wagner OF. Elevated circulating adhesion molecules in NIDDM-potential mediators in diabetic macroangiopathy. Diabetologia39, 1242–1244 (1996).
  • Matsumoto K, Sera Y, Abe Y et al. Serum concentrations of soluble vascular cell adhesion molecule-1 and E-selectin are elevated in insulin-resistant patients with Type 2 diabetes. Diabetes Care24, 1697–1698 (2001).
  • Mocco J, Choudhri TF, Mack WJ et al. Elevation of soluble intercellular adhesion molecule-1 levels in symptomatic and asymptomatic carotid atherosclerosis. Neurosurgery48, 718–721 (2001).
  • Kulseng B, Vatten L, Espevik T. Soluble tumor necrosis factor receptors in sera from patients with insulin-dependent diabetes mellitus: relations to duration and complications of disease. Acta Diabetol.36(1–2), 99–105 (1999).
  • Ghosh S, Hayden MS. New regulators of NF-κB in inflammation. Nat. Rev. Immunol.8(11), 837–848 (2008).
  • Sarkar FH, Li Y, Wang Z, Kong D. NF-κB signaling pathway and its therapeutic implications in human diseases. Int. Rev. Immunol.27(5), 293–319 (2008).
  • Srivastava SK, Ramana KV. Focus on molecules: nuclear factor-κB. Exp. Eye Res.88(1), 2–3 (2009).
  • Hofmann MA, Schiekofer S, Isermann B et al. Peripheral blood mononuclear cells isolated from patients with diabetic nephropathy show increased activation of the oxidative-stress sensitive transcription factor NF-κB. Diabetologia42(2), 222–232 (1999).
  • Sebestjen M, Zegura B, Guzic-Salobir B et al. Fibrinolytic parameters and insulin resistance in young survivors of myocardial infarction with heterozygous familial hypercholesterolemia. Wien Klin. Wochenschr.113(3–4), 113–118 (2001).
  • Wiman B, Andersson T, Hallqvist J et al. Plasma levels of tissue plasminogen activator/plasminogen activator inhibitor-1 complex and von Willebrand factor are significant risk markers for recurrent myocardial infarction in the Stockholm Heart Epidemiology Program (SHEEP) study. Arterioscler. Thromb. Vasc. Biol.20(8), 2019–2023 (2000).
  • Eren M, Painter CA, Atkinson JB et al. Age-dependent spontaneous coronary arterial thrombosis in transgenic mice that express a stable form of human plasminogen activator inhibitor-1. Circulation106, 491–496 (2002).
  • Schafer K, Muller K, Hecke A et al. Enhanced thrombosis in atherosclerosis-prone mice is associated with increased arterial expression of plasminogen activator inhibitor-1. Arterioscler. Thromb. Vasc. Biol.23(11), 2097–2103 (2003).
  • Eitzman DT, Westrick RJ, Xu Z et al. PAI-1 deficiency protects against atherosclerosis progression in the mouse carotid artery. Blood96, 4212–4215 (2000).
  • Xiao Q, Danton MJ, Witte DP et al. Plasminogen deficiency accelerates vessel wall disease in mice predisposed to atherosclerosis. Proc. Natl Acad. Sci. USA94(19), 10335–10340 (1997).
  • Fujii S, Goto D, Zaman T et al. Diminished fibrinolysis and thrombosis: clinical implications for accelerated atherosclerosis. J. Atheroscler. Thromb.5(2), 76–81 (1998).
  • Alessi MC, Juhan-Vague I. Contribution of PAI-1 in cardiovascular pathology. Arch. Mal. Coeur. Vaiss.97(6), 673–678 (2004).
  • Festa A, D’Agostino R Jr, Mykkanen L et al. Relative contribution of insulin and its precursors to fibrinogen and PAI-1 in a large population with different states of glucose tolerance. The Insulin Resistance Atherosclerosis Study (IRAS). Arterioscler. Thromb. Vasc. Biol.19(3), 562–568 (1999).
  • Li H, Sun B. Toll-like receptor 4 in atherosclerosis. J. Cell. Mol. Med.11(1), 88–95 (2007).
  • Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol.7(3), 179–190 (2007).
  • Stoll LL, Denning GM, Weintraub NL. Endotoxin, TLR4 signaling and vascular inflammation: potential therapeutic targets in cardiovascular disease. Curr. Pharm. Des.12(32), 4229–4245 (2006).
  • Uematsu S, Akira S. Toll-like receptors and innate immunity. J. Mol. Med.84(9), 712–725 (2006).
  • Mullick AE, Tobias PS, Curtiss LK. Toll-like receptors and atherosclerosis: key contributors in disease and health? Immunol. Res.34(3), 193–209 (2006).
  • Takeda K, Akira S. Roles of Toll-like receptors in innate immune responses. Genes Cells6(9), 733–742 (2001).
  • Liu X, Ukai T, Yumoto H et al. Toll-like receptor 2 plays a critical role in the progression of atherosclerosis that is independent of dietary lipids. Atherosclerosis196(1), 146–154 (2009).
  • Mullick AE, Tobias PS, Curtiss LK. Modulation of atherosclerosis in mice by Toll-like receptor 2. J. Clin. Invest.115(11), 3149–3156 (2005).
  • Bjorkbacka H, Kunjathoor VV, Moore KJ et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat. Med.10(4), 416–421 (2004).
  • Song MJ, Kim KH, Yoon JM, Kim JB. Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem. Biophys. Res. Commun.346(3), 739–745 (2006).
  • Mohammad MK, Morran M, Slotterbeck B et al. Dysregulated Toll-like receptor expression and signaling in bone marrow-derived macrophages at the onset of diabetes in the non-obese diabetic mouse. Int. Immunol.18(7), 1101–1113 (2006).
  • Kim HS, Han MS, Chung KW et al. Toll-like receptor 2 senses β-cell death and contributes to the initiation of autoimmune diabetes. Immunity27(2), 321–323 (2007).
  • Wen L, Peng J, Li Z, Wong FS. The effect of innate immunity on autoimmune diabetes and the expression of Toll-like receptors on pancreatic islets. J. Immunol.172(5), 3173–3180 (2004).
  • Park Y, Park S, Yoo E, Kim D, Shin H. Association of the polymorphism for Toll-like receptor 2 with Type 1 diabetes susceptibility. Ann. NY Acad. Sci.1037, 170–174 (2004).
  • Creely SJ, McTernan PG, Kusminski CM et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and Type 2 diabetes. Am. J. Physiol. Endocrinol. Metab.292(3), E740–E774 (2007).
  • Devaraj S, Dasu MR, Rockwood J et al. Increased Toll-like receptor (TLR) 2 and TLR4 expression in monocytes from patients with Type 1 diabetes: further evidence of a proinflammatory state. J. Clin. Endocrinol. Metab.93(2), 578–583 (2008).
  • Devaraj S, Dasu MR, Park SH, Jialal I. Increased levels of ligands of Toll-like receptors 2 and 4 in Type 1 diabetes. Diabetologia52(8), 1665–1668 (2009).
  • Schonbeck U, Libby P. CD40 signaling and plaque instability. Circ. Res.89(12), 1092–1103 (2001).
  • Schonbeck U, Libby P. The CD40/CD154 receptor/ligand dyad. Cell. Mol. Life Sci.58(1), 4–43 (2001).
  • Mach F, Schonbeck U, Libby P. CD40 signaling in vascular cells: a key role in atherosclerosis? Atherosclerosis137, S89–S95 (1998).
  • Varo N, de Lemos JA, Libby P et al. Soluble CD40L: risk prediction after acute coronary syndromes. Circulation108(9), 1049–1052 (2003)
  • Varo N, Vicent D, Libby P et al. Elevated plasma levels of the atherogenic mediator soluble CD40 ligand in diabetic patients: a novel target of thiazolidinediones. Circulation107(21), 2664–2669 (2003).
  • Lim HS, Blann AD, Lip GY. Soluble CD40 ligand, soluble P-selection, interleukin-6, and tissue factor in diabetes mellitus: relationships to cardiovascular disease and risk factor intervention. Circulation109(21), 2524–2528 (2004).
  • Jinchuan Y, Zonggui W, Jinming C et al. Upregulation of CD40–CD40 ligand system in patients with diabetes mellitus. Clin. Chim. Acta339(1–2), 85–90 (2004).
  • Venugopal SK, Devaraj S, Yang T, Jialal I. α-tocopherol decreases superoxide anion release in human monocytes under hyperglycemic conditions via inhibition of protein kinase C-alpha. Diabetes51(10), 3049–3055 (2002).
  • Dasu MR, Devaraj S, Jialal I. High glucose induces IL-1β expression in human monocytes: mechanistic insights. Am. J. Physiol. Endocrinol. Metab.293(1), E337–E346 (2007)
  • Devaraj S, Venugopal SK, Singh U, Jialal I. Hyperglycemia induces monocytic release of interleukin-6 via induction of protein kinase C-α and -β. Diabetes54(1), 85–89 (2005).
  • Shanmugam N, Reddy MA, Guha M, Natarajan R. High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes52(5), 1256–1264 (2003).
  • Srinivasan S, Bolick DT, Hatley ME et al. Glucose regulates interleukin-8 production in aortic endothelial cells through activation of the p38 mitogen-activated protein kinase pathway in diabetes. J. Biol. Chem.279(30), 31930–31936 (2004).
  • Dasu MR, Devaraj S, Zhao L et al. High glucose induces Toll-like receptor expression in human monocytes: mechanism of activation. Diabetes57(11), 3090–3098 (2008).
  • Devaraj S, Jialal I. Increased secretion of IP-10 from monocytes under hyperglycemia is via the TLR2 and TLR4 pathway. Cytokine47(1), 6–10 (2009).
  • Zeyda M, Stulnig TM. Obesity, inflammation, and insulin resistance – a mini-review. Gerontology55(4), 379–386 (2009).
  • Rasouli N, Kern PA. Adipocytokines and the metabolic complications of obesity. J. Clin. Endocrinol. Metab.93(11 Suppl. 1), S64–S73 (2008).
  • Surmi BK, Hasty AH. Macrophage infiltration into adipose tissue: initiation, propagation and remodeling. Future Lipidol.3(5), 545–556 (2008).
  • Greenfield JR, Samaras K, Jenkins AB et al. Obesity is an important determinant of baseline serum C-reactive protein concentration in monozygotic twins, independent of genetic influences. Circulation109(24), 3022–3028 (2004).
  • Sam S, Haffner S, Davidson MH et al. Relation of abdominal fat depots to systemic markers of inflammation in Type 2 diabetes. Diabetes Care32(5), 932–937 (2009).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.