29
Views
0
CrossRef citations to date
0
Altmetric
Review

Role of endothelial progenitor cells in diabetes mellitus

&
Pages 575-589 | Published online: 10 Jan 2014

References

  • Moebus S, Stang A, Mohlenkamp S et al. Association of impaired fasting glucose and coronary artery calcification as a marker of subclinical atherosclerosis in a population-based cohort – results of the Heinz Nixdorf Recall study. Diabetologia52, 81–89 (2009).
  • Avogaro A, Fadini GP, Gallo A, Pagnin E, de Kreutzenberg S. Endothelial dysfunction in Type 2 diabetes mellitus. Nutr. Metab. Cardiovasc. Dis.16(Suppl. 1), S39–S45 (2006).
  • Sobrevia L, Mann GE. Dysfunction of the endothelial nitric oxide signalling pathway in diabetes and hyperglycaemia. Exp. Physiol.82, 423–452 (1997).
  • Urbich C, Dimmeler S. Risk factors for coronary artery disease, circulating endothelial progenitor cells, and the role of HMG-CoA reductase inhibitors. Kidney Int.67, 1672–1676 (2005).
  • Chen YH, Lin SJ, Lin FY et al. High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes56(6), 1559–1568 (2007).
  • Potenza MA, Gagliardi S, Nacci C, Carratu MR, Montagnani M. Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr. Med. Chem.16, 94–112 (2009).
  • Calles-Escandon J, Cipolla M. Diabetes and endothelial dysfunction: a clinical perspective. Endocr. Rev.22(1), 36–52 (2001).
  • Balletshofer BM, Rittig K, Enderle MD et al. Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with Type 2 diabetes in association with insulin resistance. Circulation101(15), 1780–1784 (2000).
  • Nitenberg A, Valensi P, Sachs R, Dali M, Aptecar E, Attali JR. Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes42(7), 1017–1025 (1993).
  • Moreno PR, Fuster V. New aspects in the pathogenesis of diabetic atherothrombosis. J. Am. Coll. Cardiol.44(12), 2293–2300 (2004).
  • Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes54, 1615–1625 (2005).
  • McClung JA, Naseer N, Saleem M et al. Circulating endothelial cells are elevated in patients with Type 2 diabetes mellitus independently of HbA(1)c. Diabetologia48, 345–350 (2005).
  • Boos CJ, Lip GY, Blann AD. Circulating endothelial cells in cardiovascular disease. J. Am. Coll. Cardiol.48, 1538–1547 (2006).
  • Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circ. Res.100, 782–794 (2007).
  • Shibuya M. Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep.41, 278–286 (2008).
  • Ziche M, Morbidelli L. Nitric oxide and angiogenesis. J. Neurooncol.50, 139–148 (2000).
  • Ushio-Fukai M. Novel Role of NADPH Oxidase in angiogenesis and stem/progenitor cell function. Antioxid. Redox. Signal.11(10), 2517–2533 (2009).
  • Duh E, Aiello LP. Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox. Diabetes48, 1899–1906 (1999).
  • Aiello LP, Wong JS. Role of vascular endothelial growth factor in diabetic vascular complications. Kidney Int. Suppl.77, S113–S119 (2000).
  • Hato T, Tabata M, Oike Y. The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends Cardiovasc. Med.18, 6–14 (2008).
  • Pirie-Shepherd SR. Regulation of angiogenesis by the hemostatic system. Front. Biosci.8, D286–D293 (2003).
  • Matlung HL, Bakker EN, Vanbavel E. Shear stress, reactive oxygen species and arterial structure and function. Antioxid. Redox. Signal. DOI: 10.1089/ars.2008.2408 (2009) (Epub ahead of print).
  • Tao J, Yang Z, Wang JM et al. Shear stress increases Cu/Zn SOD activity and mRNA expression in human endothelial progenitor cells. J. Hum. Hypertens.21, 353–358 (2007).
  • Daub K, Lindemann S, Langer H et al. The evil in atherosclerosis: adherent platelets induce foam cell formation. Semin. Thromb. Hemost.33, 173–178 (2007).
  • Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science275, 964–967 (1997).
  • Aicher A, Rentsch M, Sasaki K et al. Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia. Circ. Res.100, 581–589 (2007).
  • Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol.28, 1584–1595 (2008).
  • Urbich C, Dimmeler S. Endothelial progenitor cells functional characterization. Trends Cardiovasc. Med.14, 318–322 (2004).
  • Fadini GP, Agostini C, Avogaro A. Characterization of endothelial progenitor cells. Biochem. Biophys. Res. Commun.336(1), 1–2 (2005).
  • Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A. Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis197, 496–503 (2008).
  • Bertolini F, Shaked Y, Mancuso P, Kerbel RS. The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat. Rev. Cancer6, 835–845 (2006).
  • Kerbel RS. Tumor angiogenesis. N. Engl. J. Med.358, 2039–2049 (2008).
  • Yoder MC, Ingram DA. Endothelial progenitor cell: ongoing controversy for defining these cells and their role in neoangiogenesis in the murine system. Curr. Opin. Hematol.16(4), 269–273 (2009).
  • Yoder MC, Klingler R, Klingler P, Ingram DA. The definition of EPCs and other bone marrow cells contributing to neoangiogenesis and tumor growth: is there common ground for understanding the roles of numerous marrow-derived cells in the neoangiogenic process. Biochim. Biophys. Acta1796(1), 50–54 (2009).
  • Prokopi M, Pula G, Mayr U et al. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood114(3), 723–732 (2009).
  • Ceradini DJ, Gurtner GC. Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc. Med.15, 57–63 (2005).
  • Hoenig MR, Bianchi C, Sellke FW. Hypoxia inducible factor-1 a, endothelial progenitor cells, monocytes, cardiovascular risk, wound healing, cobalt and hydralazine: a unifying hypothesis. Curr. Drug Targets9, 422–435 (2008).
  • Stellos K, Gawaz M. Platelets and stromal cell-derived factor-1 in progenitor cell recruitment. Semin. Thromb. Hemost.33, 159–164 (2007).
  • Braunersreuther V, Mach F, Steffens S. The specific role of chemokines in atherosclerosis. Thromb. Haemost.97, 714–721 (2007).
  • Jin H, Aiyer A, Su J et al. A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J. Clin. Invest.116, 652–662 (2006).
  • Sata M. Circulating vascular progenitor cells contribute to vascular repair, remodeling, and lesion formation. Trends Cardiovasc. Med.13, 249–253 (2003).
  • Heil M, Ziegelhoeffer T, Mees B, Schaper W. A different outlook on the role of bone marrow stem cells in vascular growth: bone marrow delivers software not hardware. Circ. Res.94, 573–574 (2004).
  • De Smet F, Segura I, De Bock K, Hohensinner PJ, Carmeliet P. Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arterioscler. Thromb. Vasc. Biol.29, 639–649 (2009).
  • Fadini GP, Sartore S, Agostini C, Avogaro A. Significance of endothelial progenitor cells in subjects with diabetes. Diabetes Care30, 1305–1313 (2007).
  • Fadini GP, Sartore S, Albiero M et al. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler. Thromb. Vasc. Biol.26, 2140–2146 (2006).
  • Sasso FC, Torella D, Carbonara O et al. Increased vascular endothelial growth factor expression but impaired vascular endothelial growth factor receptor signaling in the myocardium of Type 2 diabetic patients with chronic coronary heart disease. J. Am. Coll. Cardiol.46, 827–834 (2005).
  • Fadini GP, Sartore S, Schiavon M et al. Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats. Diabetologia49, 3075–3084 (2006).
  • Humpert PM, Neuwirth R, Battista MJ et al. SDF-1 genotype influences insulin-dependent mobilization of adult progenitor cells in Type 2 diabetes. Diabetes Care28, 934–936 (2005).
  • Humpert PM, Djuric Z, Zeuge U et al. Insulin stimulates the clonogenic potential of angiogenic endothelial progenitor cells by IGF-1 receptor-dependent signaling. Mol. Med.14, 301–308 (2008).
  • Fadini GP, Baesso I, Agostini C et al. Maternal insulin therapy increases fetal endothelial progenitor cells during diabetic pregnancy. Diabetes Care31, 808–810 (2008).
  • Ackah E, Yu J, Zoellner S et al. Akt1/protein kinase Ba is critical for ischemic and VEGF-mediated angiogenesis. J. Clin. Invest.115, 2119–2127 (2005).
  • Krankel N, Adams V, Linke A et al. Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells. Arterioscler. Thromb. Vasc. Biol.25, 698–703 (2005).
  • Cubbon RM, Rajwani A, Wheatcroft SB. The impact of insulin resistance on endothelial function, progenitor cells and repair. Diab. Vasc. Dis. Res.4, 103–111 (2007).
  • Fadini GP, de Kreutzenberg SV, Coracina A et al. Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk. Eur. Heart J.27, 2247–2255 (2006).
  • Fadini GP, de Kreutzenberg S, Agostini C et al. Low CD34+ cell count and metabolic syndrome synergistically increase the risk of adverse outcomes. Atherosclerosis DOI:10.1016/j (2009) (Epub ahead of print).
  • Fadini GP, Agostini C, Boscaro E, Avogaro A. Mechanisms and significance of progenitor cell reduction in the metabolic syndrome. Metab. Syndr. Relat. Disord.7, 5–10 (2009).
  • Marchetti V, Menghini R, Rizza S et al. Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling. Diabetes55, 2231–2237 (2006).
  • Ceradini DJ, Yao D, Grogan RH et al. Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J. Biol. Chem.283, 10930–10938 (2008).
  • Aicher A, Heeschen C, Mildner-Rihm C et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat. Med.9, 1370–1376 (2003).
  • Sasaki K, Heeschen C, Aicher A et al. Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc. Natl Acad. Sci. USA103, 14537–14541 (2006).
  • Sambuceti G, Morbelli S, Vanella L et al. Diabetes impairs the vascular recruitment of normal stem cells by oxidant damage, reversed by increases in pAMPK, heme oxygenase-1, and adiponectin. Stem Cells27, 399–407 (2009).
  • Peterson SJ, Husney D, Kruger AL et al. Long-term treatment with the apolipoprotein A1 mimetic peptide increases antioxidants and vascular repair in Type I diabetic rats. J. Pharmacol. Exp. Ther.322, 514–520 (2007).
  • Lin HH, Chen YH, Yet SF, Chau LY. Heme oxygenase-1/carbon monoxide enhances reendothelialization after vascular injury via promoting mobilization of circulating endothelial progenitor cells. J. Thromb. Haemost. (2009).
  • Li Calzi S, Purich DL, Chang KH et al. Carbon monoxide and nitric oxide mediate cytoskeletal reorganization in microvascular cells via vasodilator-stimulated phosphoprotein phosphorylation: evidence for blunted responsiveness in diabetes. Diabetes57, 2488–2494 (2008).
  • Abraham NG, Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol. Rev.60, 79–127 (2008).
  • Tamarat R, Silvestre JS, Le Ricousse-Roussanne S et al. Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment. Am. J. Pathol.164, 457–466 (2004).
  • Breen DM, Chan KK, Dhaliwall JK et al. Insulin increases reendothelialization and inhibits cell migration and neointimal growth after arterial injury. Arterioscler. Thromb. Vasc. Biol.29, 1060–1066 (2009).
  • Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. Endocr. Rev.28, 463–491 (2007).
  • Sodha NR, Clements RT, Boodhwani M et al. Endostatin and angiostatin are increased in diabetic patients with coronary artery disease and associated with impaired coronary collateral formation. Am. J. Physiol. Heart Circ. Physiol.296, H428–H434 (2009).
  • Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J. Clin. Invest.106, 571–578 (2000).
  • Awad O, Jiao C, Ma N, Dunnwald M, Schatteman GC. Obese diabetic mouse environment differentially affects primitive and monocytic endothelial cell progenitors. Stem Cells23, 575–583 (2005).
  • Fadini GP, Miorin M, Facco M et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of Type 2 diabetes mellitus. J. Am. Coll. Cardiol.45, 1449–1457 (2005).
  • Fadini GP, Coracina A, Baesso I et al. Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population. Stroke37, 2277–2282 (2006).
  • Schmidt-Lucke C, Rossig L, Fichtlscherer S et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation111, 2981–2987 (2005).
  • Maruyama S, Taguchi A, Iwashima S et al. Low circulating CD34+ cell count is associated with poor prognosis in chronic hemodialysis patients. Kidney Int.74, 1603–1609 (2008).
  • Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC. Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care28, 2155–2160 (2005).
  • Yoon YS, Uchida S, Masuo O et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation111, 2073–2085 (2005).
  • Rota M, LeCapitaine N, Hosoda T et al. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ. Res.99, 42–52 (2006).
  • Anversa P, Leri A, Kajstura J. Cardiac regeneration. J. Am. Coll. Cardiol.47, 1769–1776 (2006).
  • Rupp S, Badorff C, Koyanagi M et al. Statin therapy in patients with coronary artery disease improves the impaired endothelial progenitor cell differentiation into cardiomyogenic cells. Basic Res. Cardiol.99, 61–68 (2004).
  • Wojakowski W, Tendera M, Kucia M et al. Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J. Am. Coll. Cardiol.53, 1–9 (2009).
  • Basile DP. The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int.72, 151–156 (2007).
  • Goligorsky MS, Brodsky SV, Noiri E. NO bioavailability, endothelial dysfunction, and acute renal failure: new insights into pathophysiology. Semin. Nephrol.24, 316–323 (2004).
  • Herbrig K, Pistrosch F, Foerster S, Gross P. Endothelial progenitor cells in chronic renal insufficiency. Kidney Blood Press. Res.29, 24–31 (2006).
  • Chan CT, Li SH, Verma S. Nocturnal hemodialysis is associated with restoration of impaired endothelial progenitor cell biology in end-stage renal disease. Am. J. Physiol. Renal. Physiol.289, F679–F684 (2005).
  • Fadini GP, Miotto D, Baesso I et al. Arterio-venous gradient of endothelial progenitor cells across renal artery stenosis. Atherosclerosis182, 189–191 (2005).
  • Makino H. Decreased circulating CD34+ cells are associated with progression of diabetic nephropathy. Diabet. Med.26, 171–173 (2009).
  • Bahlmann FH, De Groot K, Spandau JM et al. Erythropoietin regulates endothelial progenitor cells. Blood103, 921–926 (2004).
  • Thomas MC, Cooper ME, Rossing K, Parving HH. Anaemia in diabetes: is there a rationale to TREAT? Diabetologia49, 1151–1157 (2006).
  • Krzyzanowska K, Mittermayer F, Krugluger W et al. Asymmetric dimethylarginine is associated with macrovascular disease and total homocysteine in patients with Type 2 diabetes. Atherosclerosis189, 236–240 (2006).
  • Thum T, Tsikas D, Stein S et al. Suppression of endothelial progenitor cells in human coronary artery disease by the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine. J. Am. Coll. Cardiol.46, 1693–1701 (2005).
  • Makino H, Okada S, Nagumo A et al. Decreased circulating CD34+ cells are associated with progression of diabetic nephropathy. Diabet. Med.26, 171–173 (2009).
  • Chen J, Li H, Addabbo F et al. Adoptive transfer of syngeneic bone marrow-derived cells in mice with obesity-induced diabetes: selenoorganic antioxidant ebselen restores stem cell competence. Am. J. Pathol.174, 701–711 (2009).
  • Csaky KG, Baffi JZ, Byrnes GA et al. Recruitment of marrow-derived endothelial cells to experimental choroidal neovascularization by local expression of vascular endothelial growth factor. Exp. Eye Res.78, 1107–1116 (2004).
  • Butler JM, Guthrie SM, Koc M et al. SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J. Clin. Invest.115, 86–93 (2005).
  • Fadini GP, Sartore S, Baesso I et al. Endothelial progenitor cells and the diabetic paradox. Diabetes Care29, 714–716 (2006).
  • Asnaghi V, Lattanzio R, Mazzolari G et al. Increased clonogenic potential of circulating endothelial progenitor cells in patients with Type 1 diabetes and proliferative retinopathy. Diabetologia49, 1109–1111 (2006).
  • Zerbini G, Tremolada G, Maestroni A et al. Increased clonogenic capacity of endothelial progenitor cells (EPCs) in Type 1 diabetic patients with early non proliferative diabetic retinopathy. Program and abstracts of the Diabetologia EASD Annual Meeting (2009).
  • Brunner S, Schernthaner GH, Satler M et al. Correlation of different circulating endothelial progenitor cells to stages of diabetic retinopathy: first in vivo data. Invest. Ophthalmol. Vis. Sci.50, 392–398 (2009).
  • Lopes de Faria JM, Silva KC, Boer PA et al. A decrease in retinal progenitor cells is associated with early features of diabetic retinopathy in a model that combines diabetes and hypertension. Mol. Vis.14, 1680–1691 (2008).
  • Hammes HP. Pericytes and the pathogenesis of diabetic retinopathy. Horm. Metab. Res.37(Suppl. 1), 39–43 (2005).
  • Bhatwadekar AD, Glenn JV, Li G et al. Advanced glycation of fibronectin impairs vascular repair by endothelial progenitor cells: implications for vasodegeneration in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci.49, 1232–1241 (2008).
  • Watanabe D, Suzuma K, Matsui S et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N. Engl. J. Med.353, 782–792 (2005).
  • Cameron NE, Cotter MA, Low PA. Nerve blood flow in early experimental diabetes in rats: relation to conduction deficits. Am. J. Physiol.261, E1–E8 (1991).
  • Naruse K, Hamada Y, Nakashima E et al. Therapeutic neovascularization using cord blood-derived endothelial progenitor cells for diabetic neuropathy. Diabetes54, 1823–1828 (2005).
  • Jeong JO, Kim MO, Kim H et al. Dual angiogenic and neurotrophic effects of bone marrow-derived endothelial progenitor cells on diabetic neuropathy. Circulation119, 699–708 (2009).
  • Chavez JC, Almhanna K, Berti-Mattera LN. Transient expression of hypoxia-inducible factor-1 α and target genes in peripheral nerves from diabetic rats. Neurosci. Lett.374, 179–182 (2005).
  • Muller-Ehmsen J, Braun D, Schneider T et al. Decreased number of circulating progenitor cells in obesity: beneficial effects of weight reduction. Eur. Heart. J.29, 1560–1568 (2008).
  • Laufs U, Werner N, Link A et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation109, 220–226 (2004).
  • Fadini GP et al. Endothelial progenitor cells and vascular biology in diabetes mellitus: current knowledge and future perspectives. Curr. Diabetes Rev.1(1), 41–58 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.