72
Views
18
CrossRef citations to date
0
Altmetric
Review

Epigenetics of diabetic complications

&
Pages 137-148 | Published online: 10 Jan 2014

References

  • Orasanu G, Plutzky J. The pathologic continuum of diabetic vascular disease. J. Am. Coll. Cardiol.53(5 Suppl.), S35–S42 (2009).
  • Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes40(4), 405–412 (1991).
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature414(6865), 813–820 (2001).
  • Clempus RE, Griendling KK. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc. Res.71(2), 216–225 (2006).
  • Ishii H, Koya D, King GL. Protein kinase C activation and its role in the development of vascular complications in diabetes mellitus. J. Mol. Med.76(1), 21–31 (1998).
  • Kim W, Hudson BI, Moser B et al. Receptor for advanced glycation end products and its ligands: a journey from the complications of diabetes to its pathogenesis. Ann. NY Acad. Sci.1043, 553–561 (2005).
  • Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N. Engl. J. Med.318(20), 1315–1321 (1988).
  • Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes54(6), 1615–1625 (2005).
  • Devaraj S, Glaser N, Griffen S, Wang-Polagruto J, Miguelino E, Jialal I. Increased monocytic activity and biomarkers of inflammation in patients with Type 1 diabetes. Diabetes55(3), 774–779 (2006).
  • Schmidt AM, Hori O, Brett J, Yan SD, Wautier JL, Stern D. Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler. Thromb.14(10), 1521–1528 (1994).
  • Shanmugam N, Gaw Gonzalo IT, Natarajan R. Molecular mechanisms of high glucose-induced cyclooxygenase-2 expression in monocytes. Diabetes53(3), 795–802 (2004).
  • Mooradian AD. Dyslipidemia in Type 2 diabetes mellitus. Nat. Clin. Pract.5(3), 150–159 (2009).
  • King GL. The role of inflammatory cytokines in diabetes and its complications. J. Periodontol.79(8 Suppl.), 1527–1534 (2008).
  • The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med.329(14), 977–986 (1993).
  • The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Effect of intensive therapy on the microvascular complications of Type 1 diabetes mellitus. JAMA287(19), 2563–2569 (2002).
  • The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of Type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA290(16), 2159–2167 (2003).
  • Pop-Busui R, Low PA, Waberski BH et al. Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in Type 1 diabetes mellitus: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). Circulation119(22), 2886–2893 (2009).
  • Nathan DM, Cleary PA, Backlund JY et al. Intensive diabetes treatment and cardiovascular disease in patients with Type 1 diabetes. N. Engl. J. Med.353(25), 2643–2653 (2005).
  • Cleary PA, Orchard TJ, Genuth S et al. The effect of intensive glycemic treatment on coronary artery calcification in Type 1 diabetic participants of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study. Diabetes55(12), 3556–3565 (2006).
  • Nathan DM, Lachin J, Cleary P et al. Intensive diabetes therapy and carotid intima-media thickness in Type 1 diabetes mellitus. N. Engl. J. Med.348(23), 2294–2303 (2003).
  • Colagiuri S, Cull CA, Holman RR. Are lower fasting plasma glucose levels at diagnosis of Type 2 diabetes associated with improved outcomes?: U.K. prospective diabetes study 61. Diabetes Care25(8), 1410–1417 (2002).
  • Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in Type 2 diabetes. N. Engl. J. Med.359(15), 1577–1589 (2008).
  • Patel A, MacMahon S, Chalmers J et al. Intensive blood glucose control and vascular outcomes in patients with Type 2 diabetes. N. Engl. J. Med.358(24), 2560–2572 (2008).
  • Giugliano D, Ceriello A, Esposito K. Glucose metabolism and hyperglycemia. Am. J. Clin. Nutr.87(1), S217–S222 (2008).
  • Ceriello A, Esposito K, Piconi L et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and Type 2 diabetic patients. Diabetes57(5), 1349–1354 (2008).
  • Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, Natarajan R. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc. Natl Acad. Sci. USA105(26), 9047–9052 (2008).
  • El-Osta A, Brasacchio D, Yao D et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med.205(10), 2409–2417 (2008).
  • Brasacchio D, Okabe J, Tikellis C et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes58(5), 1229–1236 (2009).
  • Engerman RL, Kern TS. Progression of incipient diabetic retinopathy during good glycemic control. Diabetes36(7), 808–812 (1987).
  • Hammes HP, Klinzing I, Wiegand S, Bretzel RG, Cohen AM, Federlin K. Islet transplantation inhibits diabetic retinopathy in the sucrose-fed diabetic Cohen rat. Invest. Ophthalmol. Vis. Sci.34(6), 2092–2096 (1993).
  • Chan PS, Kanwar M, Kowluru RA. Resistance of retinal inflammatory mediators to suppress after reinstitution of good glycemic control: novel mechanism for metabolic memory. J. Diabetes Complications24(1), 55–63 (2008).
  • Kowluru RA. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes52(3), 818–823 (2003).
  • Kowluru RA, Chakrabarti S, Chen S. Re-institution of good metabolic control in diabetic rats and activation of caspase-3 and nuclear transcriptional factor (NF-κB) in the retina. Acta Diabetol.41(4), 194–199 (2004).
  • Kowluru RA, Kanwar M, Kennedy A. Metabolic memory phenomenon and accumulation of peroxynitrite in retinal capillaries. Exp. Diabetes Res.2007, 21976 (2007).
  • Kowluru RA, Abbas SN, Odenbach S. Reversal of hyperglycemia and diabetic nephropathy: effect of reinstitution of good metabolic control on oxidative stress in the kidney of diabetic rats. J. Diabetes Complications18(5), 282–288 (2004).
  • Roy S, Sala R, Cagliero E, Lorenzi M. Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proc. Natl Acad. Sci. USA87(1), 404–408 (1990).
  • Ihnat MA, Thorpe JE, Ceriello A. Hypothesis: the ‘metabolic memory’, the new challenge of diabetes. Diabet. Med.24(6), 582–586 (2007).
  • Ihnat MA, Thorpe JE, Kamat CD et al. Reactive oxygen species mediate a cellular ‘memory’ of high glucose stress signalling. Diabetologia50(7), 1523–1531 (2007).
  • Li SL, Reddy MA, Cai Q et al. Enhanced proatherogenic responses in macrophages and vascular smooth muscle cells derived from diabetic db/db mice. Diabetes55(9), 2611–2619 (2006).
  • Ceriello A, Ihnat MA, Thorpe JE. Clinical review 2: the “metabolic memory”: is more than just tight glucose control necessary to prevent diabetic complications? J. Clin. Endocrinol. Metab.94(2), 410–415 (2009).
  • Calcutt NA, Cooper ME, Kern TS, Schmidt AM. Therapies for hyperglycaemia-induced diabetic complications: from animal models to clinical trials. Nat. Rev. Drug Discov.8(5), 417–429 (2009).
  • Yan SF, Ramasamy R, Bucciarelli LG et al. RAGE and its ligands: a lasting memory in diabetic complications? Diab. Vasc. Dis. Res.1(1), 10–20 (2004).
  • Meerwaldt R, Links T, Zeebregts C, Tio R, Hillebrands JL, Smit A. The clinical relevance of assessing advanced glycation endproducts accumulation in diabetes. Cardiovasc. Diabetol.7, 29 (2008).
  • Jenuwein T, Allis CD. Translating the histone code. Science293(5532), 1074–1080 (2001).
  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature403(6765), 41–45 (2000).
  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature389(6648), 251–260 (1997).
  • Liu L, Li Y, Tollefsbol TO. Gene–environment interactions and epigenetic basis of human diseases. Curr. Issues Mol. Biol.10(1–2), 25–36 (2008).
  • Rome S, Meugnier E, Vidal H. The ubiquitin–proteasome pathway is a new partner for the control of insulin signaling. Curr. Opin. Clin. Nutr. Metab. Care7(3), 249–254 (2004).
  • Ehninger A, Mziaut H, Solimena M. Emerging role of SUMO in pancreatic β-cells. Horm. Metab. Res.39(9), 658–664 (2007).
  • Zhao J. Sumoylation regulates diverse biological processes. Cell. Mol. Life Sci.64(23), 3017–3033 (2007).
  • Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu. Rev. Biochem.70, 81–120 (2001).
  • Kouzarides T. Chromatin modifications and their function. Cell128(4), 693–705 (2007).
  • Lee DY, Teyssier C, Strahl BD, Stallcup MR. Role of protein methylation in regulation of transcription. Endocr. Rev.26(2), 147–170 (2005).
  • Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev.15(18), 2343–2360 (2001).
  • Ruthenburg AJ, Allis CD, Wysocka J. Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol. Cell25(1), 15–30 (2007).
  • Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol.6(11), 838–849 (2005).
  • Shi Y, Lan F, Matson C et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell119(7), 941–953 (2004).
  • Metzger E, Wissmann M, Yin N et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature437(7057), 436–439 (2005).
  • Whetstine JR, Nottke A, Lan F et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell125(3), 467–481 (2006).
  • Tsukada Y, Fang J, Erdjument-Bromage H et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature439(7078), 811–816 (2006).
  • Shi Y. Histone lysine demethylases: emerging roles in development, physiology and disease. Nat. Rev. Genet.8(11), 829–833 (2007).
  • Allis CD, Berger SL, Cote J et al. New nomenclature for chromatin-modifying enzymes. Cell131(4), 633–636 (2007).
  • Trojer P, Reinberg D. Histone lysine demethylases and their impact on epigenetics. Cell125(2), 213–217 (2006).
  • Tateishi K, Okada Y, Kallin EM, Zhang Y. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature458(7239), 757–761 (2009).
  • Morgan HD, Sutherland HG, Martin DI, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet.23(3), 314–318 (1999).
  • Park JH, Stoffers DA, Nicholls RD, Simmons RA. Development of Type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J. Clin. Invest.118(6), 2316–2324 (2008).
  • Ling C, Del Guerra S, Lupi R et al. Epigenetic regulation of PPARGC1A in human Type 2 diabetic islets and effect on insulin secretion. Diabetologia51(4), 615–622 (2008).
  • Barres R, Osler ME, Yan J et al. Non-CpG methylation of the PGC-1α promoter through DNMT3B controls mitochondrial density. Cell Metab.10(3), 189–198 (2009).
  • Bird A. Perceptions of epigenetics. Nature447(7143), 396–398 (2007).
  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev.23(7), 781–783 (2009).
  • Gray SG, De Meyts P. Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab. Res. Rev.21(5), 416–433 (2005).
  • Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science324(5930), 1076–1080 (2009).
  • Ashburner BP, Westerheide SD, Baldwin AS Jr. The p65 (RelA) subunit of NF-κB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol. Cell. Biol.21(20), 7065–7077 (2001).
  • Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, Collins T. CREB-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl Acad. Sci. USA94(7), 2927–2932 (1997).
  • Ito K, Hanazawa T, Tomita K, Barnes PJ, Adcock IM. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem. Biophys. Res. Commun.315(1), 240–245 (2004).
  • Vanden Berghe W, De Bosscher K, Boone E, Plaisance S, Haegeman G. The nuclear factor-κB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. J. Biol. Chem.274(45), 32091–32098 (1999).
  • Miao F, Gonzalo IG, Lanting L, Natarajan R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J. Biol. Chem.279(17), 18091–18097 (2004).
  • Reddy MA, Sahar S, Villeneuve LM, Lanting L, Natarajan R. Role of Src tyrosine kinase in the atherogenic effects of the 12/15-lipoxygenase pathway in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol.29(3), 387–393 (2009).
  • Miao F, Wu X, Zhang L, Yuan YC, Riggs AD, Natarajan R. Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes. J. Biol. Chem.282(18), 13854–13863 (2007).
  • Miao F, Wu X, Zhang L, Riggs AD, Natarajan R. Histone methylation patterns are cell-type specific in human monocytes and lymphocytes and well maintained at core genes. J. Immunol.180(4), 2264–2269 (2008).
  • Miao F, Smith DD, Zhang L, Min A, Feng W, Natarajan R. Lymphocytes from patients with Type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes57(12), 3189–3198 (2008).
  • Li Y, Reddy MA, Miao F et al. Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-κB-dependent inflammatory genes. Relevance to diabetes and inflammation. J. Biol. Chem.283(39), 26771–26781 (2008).
  • Sarraf SA, Stancheva I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol. Cell15(4), 595–605 (2004).
  • Chen H, Gu X, Su IH et al. Polycomb protein Ezh2 regulates pancreatic β-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev.23(8), 975–985 (2009).
  • Dhawan S, Tschen SI, Bhushan A. Bmi-1 regulates the Ink4a/Arf locus to control pancreatic β-cell proliferation. Genes Dev.23(8), 906–911 (2009).
  • Francis NJ, Follmer NE, Simon MD, Aghia G, Butler JD. Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro. Cell137(1), 110–122 (2009).
  • Hansen KH, Bracken AP, Pasini D et al. A model for transmission of the H3K27me3 epigenetic mark. Nat. Cell Biol.10(11), 1291–1300 (2008).
  • Hake SB, Allis CD. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc. Natl Acad. Sci. USA103(17), 6428–6435 (2006).
  • Henikoff S, Furuyama T, Ahmad K. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet.20(7), 320–326 (2004).
  • Ng RK, Gurdon JB. Epigenetic inheritance of cell differentiation status. Cell Cycle7(9), 1173–1177 (2008).
  • Abbott DW, Laszczak M, Lewis JD et al. Structural characterization of macroH2A containing chromatin. Biochemistry43(5), 1352–1359 (2004).
  • Fan JY, Rangasamy D, Luger K, Tremethick DJ. H2A.Z alters the nucleosome surface to promote HP1alpha-mediated chromatin fiber folding. Mol. Cell16(4), 655–661 (2004).
  • Korber P, Horz W. SWRred not shaken; mixing the histones. Cell117(1), 5–7 (2004).
  • Martens JA, Winston F. Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr. Opin. Genet. Dev.13(2), 136–142 (2003).
  • Geiman TM, Sankpal UT, Robertson AK, Zhao Y, Zhao Y, Robertson KD. DNMT3B interacts with hSNF2H chromatin remodeling enzyme, HDACs 1 and 2, and components of the histone methylation system. Biochem. Biophys. Res. Commun.318(2), 544–555 (2004).
  • Hassan AH, Neely KE, Workman JL. Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell104(6), 817–827 (2001).
  • Nielsen AL, Sanchez C, Ichinose H et al. Selective interaction between the chromatin-remodeling factor BRG1 and the heterochromatin-associated protein HP1a. EMBO J.21(21), 5797–5806 (2002).
  • Hassan AH, Prochasson P, Neely KE et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell111(3), 369–379 (2002).
  • Salma N, Xiao H, Mueller E, Imbalzano AN. Temporal recruitment of transcription factors and SWI/SNF chromatin-remodeling enzymes during adipogenic induction of the peroxisome proliferator-activated receptor γ nuclear hormone receptor. Mol. Cell. Biol.24(11), 4651–4663 (2004).
  • Marfella CG, Henninger N, LeBlanc SE et al. A mutation in the mouse Chd2 chromatin remodeling enzyme results in a complex renal phenotype. Kidney Blood Press. Res.31(6), 421–432 (2008).
  • Ceriello A, Piconi L, Esposito K, Giugliano D. Telmisartan shows an equivalent effect of vitamin C in further improving endothelial dysfunction after glycemia normalization in Type 1 diabetes. Diabetes Care30(7), 1694–1698 (2007).
  • Moving AHEAD with an international human epigenome project. Nature454(7205), 711–715 (2008).
  • Qiu J. Epigenetics: unfinished symphony. Nature441(7090), 143–145 (2006).
  • Wang Z, Schones DE, Zhao K. Characterization of human epigenomes. Curr. Opin. Genet. Dev.19(2), 127–134 (2009).
  • Maier S, Olek A. Diabetes: a candidate disease for efficient DNA methylation profiling. J. Nutr.132(8 Suppl.), S2440–S2443 (2002).
  • Stenvinkel P, Karimi M, Johansson S et al. Impact of inflammation on epigenetic DNA methylation – a novel risk factor for cardiovascular disease? J. Intern. Med.261(5), 488–499 (2007).
  • Zaina S, Dossing KB, Lindholm MW, Lund G. Chromatin modification by lipids and lipoprotein components: an initiating event in atherogenesis? Curr. Opin. Lipidol.16(5), 549–553 (2005).
  • Brennan EP, Ehrich M, Brazil DP et al. Comparative analysis of DNA methylation profiles in peripheral blood leukocytes versus lymphoblastoid cell lines. Epigenetics4(3), 159–164 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.