44
Views
0
CrossRef citations to date
0
Altmetric
Review

Physiological and clinical role of insulin in the neonate

, &
Pages 197-207 | Published online: 10 Jan 2014

References

  • Cowett RM, Farrag HM. Selected principles of perinatal–neonatal glucose metabolism. Semin. Neonatol.9(1), 37–47 (2004).
  • Gloyn Al, Pearson Er, Antcliff Jf et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Eng. J. Med.350(18), 1838–1849 (2004).
  • Shield JP. Neonatal diabetes: how research unravelling the genetic puzzle has both widened our understanding of pancreatic development whilst improving children’s quality of life. Horm. Res.67(2), 77–83 (2007).
  • Polak M, Cave H. Neonatal diabetes mellitus: a disease linked to multiple mechanisms. Orphanet. J. Rare Dis.2, 12 (2007).
  • Kao LS, Morris BH, Lally KP, Stewart CD, Huseby V, Kennedy KA. Hyperglycemia and morbidity and mortality in extremely low birth weight infants. J. Perinatol.26(12), 730–736 (2006).
  • Blanco CL, Baillargeon JG, Morrison RL, Gong AK. Hyperglycemia in extremely low birth weight infants in a predominantly hispanic population and related morbidities. J. Perinatol.26(12), 737–741 (2006).
  • Hays SP, Smith EO, Sunehag AL. Hyperglycemia is a risk factor for early death and morbidity in extremely low birth-weight infants. Pediatrics118(5), 1811–1818 (2006).
  • Van den Berghe G, Vlasselaers D, Vanhorebeek I. Insulin therapy in very-low-birth-weight infants. N. Eng. J. Med.360(5), 535 (2009).
  • Molina RD, Meschia G, Battaglia FC, Hay WW Jr. Gestational maturation of placental glucose transfer capacity in sheep. Am. J. Physiol.261(3 Pt 2), R697–R704 (1991).
  • Fowden AL. Endocrine regulation of fetal growth. Reprod. Fertil. Dev.7(3), 351–363 (1995).
  • Fowden AL, Hill DJ. Intra-uterine programming of the endocrine pancreas. Br. Med. Bull.60, 123–142 (2001).
  • Garofano A, Czernichow P, Breant B. β-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Diabetologia41(9), 1114–1120 (1998).
  • Limesand SW, Hay WW Jr. Adaptation of ovine fetal pancreatic insulin secretion to chronic hypoglycaemia and euglycaemic correction. J. Physiol.547(Pt 1), 95–105 (2003).
  • Economides DL, Proudler A, Nicolaides KH. Plasma insulin in appropriate and small for gestational age fetuses. Am. J. Obstet. Gynecol.160, 1091–1094 (1989).
  • Fowden AL, Gardner DS, Ousey JC, Giussani DA, Forhead AJ. Maturation of pancreatic β-cell function in the fetal horse during late gestation. J. Endocrinol.186(3), 467–473 (2005).
  • Ktorza A, Bihoreau MT, Nurjhan N, Picon L, Girard J. Insulin and glucagon during the perinatal period: secretion and metabolic effects on the liver. Biol. Neonate48(4), 204–220 (1985).
  • Amin H, Holst JJ, Hartmann B, Wallace L, Wright J, Sigalet DL. Functional ontogeny of the proglucagon-derived peptide axis in the premature human neonate. Pediatrics121(1), E180–E186 (2008).
  • Padidela R, Patterson M, Sharief N, Ghatei M, Hussain K. Elevated basal and post feed glucagon like peptide 1 (GLP-1) concentrations in the neonatal period. Eur. J. Endocrinol.160(1), 53–58 (2008).
  • Aynsley-Green A. The endocrinology of feeding in the newborn. Baillieres Clin. Endocrinol. Metab.3(3), 837–868 (1989).
  • Philipps AF, Dubin JW, Raye Jr. Maturation of early-phase insulin release in the neonatal lamb. Bilo. Neonate39(5–6), 225–231 (1981).
  • King RA, Smith RM, Dahlenburg GW. Long term postnatal development of insulin secretion in early premature infants. Early Hum. Dev.13, 285–294 (1986).
  • Reusens B, Remacle C. Programming of the endocrine pancreas by the early nutritional environment. Int. J. Biochem. Cell. Biol.38(5–6), 913–922 (2006).
  • Sperling MA. ATP-sensitive potassium channels – neonatal diabetes mellitus and beyond. N. Eng. J. Med.355(5), 507–510 (2006).
  • Fowden AL. The role of insulin in prenatal growth. J. Dev. Physiol.12(4), 173–182 (1989).
  • Wertheimer E, Lu SP, Backeljauw PF et al. Homozygous deletion of the human insulin receptor gene results in leprechaunism. Nat. Genet.5(1), 71–73 (1993).
  • Santalucia T, Camps M, Castello A et al. Developmental regulation of GLUT-1 (erythroid/hep g2) and GLUT-4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue. Endocrinology130(2), 837–846 (1992).
  • Sadiq HF, Das UG, Tracy TF, Devaskar SU. Intra-uterine growth restriction differentially regulates perinatal brain and skeletal muscle glucose transporters. Brain Res.823(1–2), 96–103 (1999).
  • Farrag H, Nawrath L, Healey J et al. Persistent glucose production and greater peripheral sensitivity to insulin in the neoante vs the adult. Am. J. Physiol.272(35), E86–E93 (1997).
  • Poindexter BB, Karn CA, Denne SC. Exogenous insulin reduces proteolysis and protein synthesis in extremely low birth weight infants. J. Pediatr.132(6), 948–953 (1998).
  • O’connor PM, Bush JA, Suryawan A, Nguyen HV, Davis TA. Insulin and amino acids independently stimulate skeletal muscle protein synthesis in neonatal pigs. Am. J. Physiol.284(1), E110–E119 (2003).
  • Wray-Cahen D, Beckett PR, Nguyen HV, Davis TA. Insulin-stimulated amino acid utilization during glucose and amino acid clamps decreases with development. Am. J. Physiol.273(2 Pt 1), E305–E314 (1997).
  • O’connor PM, Kimball SR, Suryawan A et al. Regulation of neonatal liver protein synthesis by insulin and amino acids in pigs. Am. J. Physiol.286(6), E994–E1003 (2004).
  • Fant ME, Weisoly D. Insulin and insulin-like growth factors in human development: Implications for the perinatal period. Semin. Perinatol.25(6), 426–435 (2001).
  • Engstrom E, Niklasson A, Wikland KA, Ewald U, Hellstrom A. The role of maternal factors, postnatal nutrition, weight gain, and gender in regulation of serum igf-i among preterm infants. Pediatr. Res.57(4), 605–610 (2005).
  • Ong K, Kratzsch J, Kiess W, Dunger D. Circulating igf-i levels in childhood are related to both current body composition and early postnatal growth rate. J. Clin. Endocrinol. Metab.87(3), 1041–1044 (2002).
  • Babenko AP, Polak M, Cave H et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N. Eng. J. Med.355(5), 456–466 (2006).
  • Edghill El, Flanagan SE, Patch AM et al. Insulin mutation screening in 1,044 patients with diabetes: mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes57(4), 1034–1042 (2008).
  • Njolstad Pr, Sovik O, Cuesta-Munoz A et al. Neonatal diabetes mellitus due to complete glucokinase deficiency. N. Eng. J. Med.344(21), 1588–1592 (2001).
  • Edghill El, Bingham C, Slingerland AS et al. Hepatocyte nuclear factor-1 β mutations cause neonatal diabetes and intrauterine growth retardation: support for a critical role of HNF-1β in human pancreatic development. Diabet. Med.23(12), 1301–1306 (2006).
  • Hoveyda N, Shield JP, Garrett C et al. Neonatal diabetes mellitus and cerebellar hypoplasia/agenesis: report of a new recessive syndrome. J. Med. Genet.36(9), 700–704 (1999).
  • Delepine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C. EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat. Genet.25(4), 406–409 (2000).
  • Wildin Rs, Ramsdell F, Peake J et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet.27(1), 18–20 (2001).
  • Stoffers DA, Ferrer J, Clarke WL, Habener JF. Early-onset Type-II diabetes mellitus (mody4) linked to IPF1. Nat. Genet.17(2), 138–139 (1997).
  • Sellick GS, Barker KT, Stolte-Dijkstra I et al. Mutations in PTF1a cause pancreatic and cerebellar agenesis. Nat. Genet.36(12), 1301–1305 (2004).
  • Pearson ER, Flechtner I, Njolstad PR et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N. Eng. J. Med.355(5), 467–477 (2006).
  • Slingerland AS, Hattersley AT. Mutations in the Kir6.2 subunit of the KATP channel and permanent neonatal diabetes: new insights and new treatment. Ann. Med.37(3), 186–195 (2005).
  • Northam EA, Anderson PJ, Jacobs R, Hughes M, Warne GL, Werther GA. Neuropsychological profiles of children with Type 1 diabetes 6 years after disease onset. Diabetes Care24(9), 1541–1546 (2001).
  • Ferguson SC, Blane A, Wardlaw J et al. Influence of an early-onset age of Type 1 diabetes on cerebral structure and cognitive function. Diabetes Care28(6), 1431–1437 (2005).
  • Wintergerst KA, Hargadon S, Hsiang HY. Continuous subcutaneous insulin infusion in neonatal diabetes mellitus. Pediatr. Diabetes5(4), 202–206 (2004).
  • Olinder AL, Kernell A, Smide B. Treatment with CSII in two infants with neonatal diabetes mellitus. Pediatr. Diabetes7(5), 284–288 (2006).
  • Mccowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia. Crit. Care Clin.17(1), 107–124 (2001).
  • Turnbull AV, Rivier CL. Regulation of the hypothalamic–pituitary–adrenal axis by cytokines: actions and mechanisms of action. Physiol. Rev.79(1), 1–71 (1999).
  • Sunehag A, Ewald U, Gustafsson J. Extremely preterm infants (< 28 weeks) are capable of gluconeogenesis from glycerol on their first day of life. Pediatr. Res.40(4), 553–557 (1996).
  • Permutt MA, Koranyi L, Keller K, Lacy PE, Scharp DW, Mueckler M. Cloning and functional expression of a human pancreatic islet glucose-transporter cDNA. Proc. Natl Acad. Sci. USA86(22), 8688–8692 (1989).
  • Navarro-Tableros V, Fiordelisio T, Hernandez-Cruz A, Hiriart M. Physiological development of insulin secretion, calcium channels, and GLUT2 expression of pancreatic rat β-cells. Am. J. Physiol.292(4), E1018–E1029 (2007).
  • Richardson CC, Hussain K, Jones PM et al. Low levels of glucose transporters and K+ATP channels in human pancreatic β cells early in development. Diabetologia50(5), 1000–1005 (2007).
  • Mitanchez-Mokhtari D, Lahlou N, Kieffer F, Magny JF, Roger M, Voyer M. Both relative insulin resistance and defective islet β-cell processing of proinsulin are responsible for transient hyperglycemia in extremely preterm infants. Pediatrics113(3 Pt 1), 537–541 (2004).
  • Revers Rr, Henry R, Schmeiser L et al. The effects of biosynthetic human proinsulin on carbohydrate metabolism. Diabetes33(8), 762–770 (1984).
  • Holst JJ, Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am. J. Physiol.287(2), E199–E206 (2004).
  • Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology132(6), 2131–2157 (2007).
  • Mehta VK, Hao W, Brooks-Worrell BM, Palmer JP. Low-dose interleukin 1 and tumor necrosis factor individually stimulate insulin release but in combination cause suppression. Eur. J. Endocrinol.130(2), 208–214 (1994).
  • Hey E. Hyperglycaemia and the very preterm baby. Semin. Fetal Neonatal. Med.10(4), 377–387 (2005).
  • Mizock BA. Alterations in fuel metabolism in critical illness: hyperglycaemia. Best Pract. Res. Clin. Endocrinol. Metab.15(4), 533–551 (2001).
  • Tarnow-Mordi W, Parry G. The CRIB score. Lancet342(8883), 1365 (1993).
  • Nielson CP, Hindson DA. Inhibition of polymorphonuclear leukocyte respiratory burst by elevated glucose concentrations in vitro. Diabetes38(8), 1031–1035 (1989).
  • Turina M, Fry DE, Polk HC Jr. Acute hyperglycemia and the innate immune system: clinical, cellular, and molecular aspects. Crit. Care Med.33(7), 1624–1633 (2005).
  • Marik PE, Raghavan M. Stress-hyperglycemia, insulin and immunomodulation in sepsis. Intensive Care Med.30(5), 748–756 (2004).
  • Van Den Berghe G. How does blood glucose control with insulin save lives in intensive care? J. Clin. Invest.114(9), 1187–1195 (2004).
  • Vanhorebeek I, De Vos R, Mesotten D, Wouters Pj, De Wolf-Peeters C, Van Den Berghe G. Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet365(9453), 53–59 (2005).
  • Cooke RW, Foulder-Hughes L. Growth impairment in the very preterm and cognitive and motor performance at 7 years. Arch. Dis. Child88(6), 482–487 (2003).
  • Orellana RA, O’connor PM, Bush JA et al. Modulation of muscle protein synthesis by insulin is maintained during neonatal endotoxemia. Am. J. Physiol.291(1), E159–E166 (2006).
  • Ertl T, Gyarmati J, Gaal V, Szabo I. Relationship between hyperglycemia and retinopathy of prematurity in very low birth weight infants. Biol. Neonate89(1), 56–59 (2006).
  • Lofqvist C, Engstrom E, Sigurdsson J et al. Postnatal head growth deficit among premature infants parallels retinopathy of prematurity and insulin-like growth factor-1 deficit. Pediatrics117(6), 1930–1938 (2006).
  • Hikino S, Ihara K, Yamamoto J et al. Physical growth and retinopathy in preterm infants: involvement of IGF-I and GH. Pediatr. Res.50(6), 732–736 (2001).
  • Hellstrom A, Engstrom E, Hard Al et al. Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth. Pediatrics112(5), 1016–1020 (2003).
  • Chen J, Smith LE. Retinopathy of prematurity. Angiogenesis10(2), 133–140 (2007).
  • Lingohr MK, Buettner R, Rhodes CJ. Pancreatic β-cell growth and survival – a role in obesity-linked Type 2 diabetes? Trends Mol. Med.8(8), 375–384 (2002).
  • Ackermann AM, Gannon M. Molecular regulation of pancreatic β-cell mass development, maintenance, and expansion. J. Mol. Endocrinol.38(1–2), 193–206 (2007).
  • Sesti G. Apoptosis in the β cells: cause or consequence of insulin secretion defect in diabetes? Ann. Med.34(6), 444–450 (2002).
  • Van Haeften TW, Twickler TB. Insulin-like growth factors and pancreas β cells. Eur. J. Clin. Invest.34(4), 249–255 (2004).
  • Petrik J, Arany E, Mcdonald TJ, Hill DJ. Apoptosis in the pancreatic islet cells of the neonatal rat is associated with a reduced expression of insulin-like growth factor II that may act as a survival factor. Endocrinology139(6), 2994–3004 (1998).
  • George M, Ayuso E, Casellas A, Costa C, Devedjian JC, Bosch F. β cell expression of IGF-I leads to recovery from Type 1 diabetes. J. Clin. Invest.109(9), 1153–1163 (2002).
  • Petrik J, Reusens B, Arany E et al. A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II. Endocrinology140(10), 4861–4873 (1999).
  • Kassem SA, Ariel I, Thornton PS, Scheimberg I, Glaser B. β-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes49(8), 1325–1333 (2000).
  • Kanarek KS, Santeiro M, Malone J. Continuous infusion of insulin in hyperglycaemic low birth weight infants receiving parentral nutrition with and without lipid emulsion. JPEN J. Parenter. Enteral. Nutr.15(4), 417–420 (1991).
  • Goldman SL, Hirata T. Attenuated response to insulin in very low birthweight infants. Pediatr. Res.14, 50–53 (1980).
  • Collins JW, Hoppe M, Brown K, Edidin D, Padbury J, Ogata E. A controlled trial of insulin infusion and parentral nutrition in extremely low birth weight infants with glucose intolerance. J. Pediatr.118, 921–927 (1991).
  • Meetze W, Bowsher R, Compton J, Moorehead H. Hyperglycaemia in extremely-low birth weight infants. Biol. Neon.74, 214–221 (1998).
  • Beardsall K, Ogilvy-Stuart AL, Frystyk J et al. Early elective insulin therapy can reduce hyperglycemia and increase insulin-like growth factor-I levels in very low birth weight infants. J. Pediatr.151(6), 611–617, 617, E611 (2007).
  • Beardsall K, Vanhaesebrouck S, Ogilvy-Stuart AL et al. Early insulin therapy in very-low-birth-weight infants. N. Eng. J. Med.359(18), 1873–1884 (2008).
  • Beardsall K, Ogilvy-Stuart AL, Ahluwalia J, Thompson M, Dunger DB. The continuous glucose monitoring sensor in neonatal intensive care. Arch. Dis. Child.90(4), F307–F310 (2005).
  • Grover A, Khashu M, Mukherjee A, Kairamkonda V. Iatrogenic malnutrition in neonatal intensive care units: urgent need to modify practice. J. Parenter. Enteral. Nutr.32(2), 140–144 (2008).
  • Bottino M, Cowett RM, Sinclair JC. Interventions for treatment of neonatal hyperglycemia in very low birth weight infants. Cochrane Database Syst. Rev. (Online) (1), CD007453 (2009).
  • Leunissen RW, Oosterbeek P, Hol LK, Hellingman AA, Stijnen T, Hokken-Koelega AC. Fat mass accumulation during childhood determines insulin sensitivity in early adulthood. J. Clin. Endocrinol. Metab.93(2), 445–451 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.