62
Views
10
CrossRef citations to date
0
Altmetric
Review

Maternal undernutrition and endocrine development

, &
Pages 297-312 | Published online: 10 Jan 2014

References

  • Barker DJP. Mothers, Babies and Disease in Later Life. BMJ Publishing Group, London, UK (1994).
  • Wintour EM, Owens JA. Early Life Origins of Health and Disease. Springer, NY, USA (2006).
  • Bateson P, Barker D, Clutton-Brock T et al. Developmental plasticity and human health. Nature430(6998), 419–421 (2004).
  • Weinhold B. Epigenetics: the science of change. Environ. Health Perspect.114(3), 160–167 (2006).
  • Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE. Maternal nutrition and fetal development. J. Nutr.134(9), 2169–2172 (2004).
  • Lillycrop KA, Hanson MA, Burdge GC. Epigenetics and the influence of maternal diet. In: Early Life Origins of Human Health and Disease. Newnham JP, Ross MG (Eds). Karger, Basel, Switzerland 11–20 (2009).
  • Kim Y-I. Nutritional epigenetics: impact of folate deficiency on DNA methylation and colon cancer susceptibility. J. Nutr.135(11), 2703–2709 (2005).
  • Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol.23(15), 5293–5300 (2003).
  • Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature429(6990), 457–463 (2004).
  • Epigenetic Markers. Widschwendter M (Ed.). IOS Press, Amsterdam, The Netherlands (2007).
  • Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med.359(1), 61–73 (2008).
  • Jones HN, Woollett LA, Barbour N, Prasad PD, Powell TL, Jansson T. High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB J.23(1), 271–278 (2009).
  • Armitage JA, Taylor PD, Poston L. Experimental models of developmental programming: consequences of exposure to an energy rich diet during development. J. Physiol.565(1), 3–8 (2005).
  • Lawlor DA, Timpson NJ, Harbord RM et al. Exploring the developmental overnutrition hypothesis using parental-offspring associations and FTO as an instrumental variable. PLoS Med.5(3), E33 (2008).
  • Waller DK, Dawson TE. Relationship between maternal obesity and adverse pregnancy outcomes. In: The Impact of Maternal Nutrition on the Offspring. Hornstra G, Uauy R, Yang X (Eds). Karger, Basel, Switzerland 197–212 (2005).
  • King JC. Maternal obesity, metabolism, and pregnancy outcomes. Annu. Rev. Nutr.26, 271–291 (2006).
  • Chen H, Simar D, Lambert K, Mercier J, Morris MJ. Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism. Endocrinology149(11), 5348–5356 (2008).
  • Taylor PD, Poston L. Developmental programming of obesity in mammals. Exp. Physiol.92(2), 287–298 (2007).
  • Levin BE. Metabolic imprinting: critical impact of the perinatal environment on the regulation of energy homeostasis. Philos. Trans. R. Soc. Lond. B Biol. Sci.361(1471), 1107–1121 (2006).
  • Catalano PM, Ehrenberg HM. The short- and long-term implications of maternal obesity on the mother and her offspring. BJOG113(10), 1126–1133 (2006).
  • Black RE. Micronutrients in pregnancy. Br. J. Nutr.85(Suppl. 2), S193–S197 (2001).
  • Godfrey KM, Barker DJ. Fetal nutrition and adult disease. Am. J. Clin. Nutr.71(5 Suppl.), 1344–1352 (2000).
  • Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum. Dev.82(8), 485–491 (2006).
  • Godfrey K, Robinson S, Barker DJ, Osmond C, Cox V. Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ312(7028), 410–414 (1996).
  • Rao S, Yajnik CS, Kanade A et al. Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune Maternal Nutrition Study. J. Nutr.131(4), 1217–1224 (2001).
  • Venu L, Harishankar N, Prasanna KT, Raghunath M. Maternal dietary vitamin restriction increases body fat content but not insulin resistance in WNIN rat offspring up to 6 months of age. Diabetologia47(9), 1493–1501 (2004).
  • Gambling L, Dunford S, Wallace DI et al. Iron deficiency during pregnancy affects postnatal blood pressure in the rat. J. Physiol.552(2), 603–610 (2003).
  • Mahajan S, Aalinkeel R, Shah P, Singh S, Kochupillai N. Nutritional anaemia dysregulates endocrine control of fetal growth. Br. J. Nutr.100(2), 408–417 (2008).
  • Dunn JT. Iodine supplementation and the prevention of cretinism. Ann. NY Acad. Sci.678, 158–168 (1993).
  • Tomat AL, Inserra F, Veiras L et al. Moderate zinc restriction during fetal and postnatal growth of rats: effects on adult arterial blood pressure and kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol.295(2), R543–R549 (2008).
  • Bergel E, Belizán JM. A deficient maternal calcium intake during pregnancy increases blood pressure of the offspring in adult rats. BJOG109(5), 540–545 (2002).
  • Belizan JM, Villar J, Bergel E et al. Long-term effect of calcium supplementation during pregnancy on the blood pressure of offspring: follow up of a randomised controlled trial. BMJ315(7103), 281–285 (1997).
  • Hiller JE, Crowther CA, Moore VA, Willson K, Robinson JS. Calcium supplementation in pregnancy and its impact on blood pressure in children and women: follow up of a randomised controlled trial. Aust. NZ J. Obstet. Gynaecol.47(2), 115–121 (2007).
  • Langley SC, Jackson AA. Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin. Sci.86(2), 217–222 (1994).
  • Skilton MR, Gosby AK, Wu BJ et al. Maternal undernutrition reduces aortic wall thickness and elastin content in offspring rats without altering endothelial function. Clin. Sci.111(4), 281–287 (2006).
  • Cheema KK, Dent MR, Saini HK, Aroutiounova N, Tappia PS. Prenatal exposure to maternal undernutrition induces adult cardiac dysfunction. Br. J. Nutr.93(4), 471–477 (2005).
  • Gangula PRR, Reed L, Yallampalli C. Antihypertensive effects of flutamide in rats that are exposed to a low-protein diet in utero. Am. J. Obstet. Gynecol.192(3), 952–960 (2005).
  • Adair LS, Kuzawa CW, Borja J. Maternal energy stores and diet composition during pregnancy program adolescent blood pressure. Circulation104(9), 1034–1039 (2001).
  • Huh SY, Rifas-Shiman SL, Kleinman KP, Rich-Edwards JW, Lipshultz SE, Gillman MW. Maternal protein intake is not associated with infant blood pressure. Int. J. Epidemiol.34(2), 378–384 (2005).
  • Sathishkumar K, Elkins R, Yallampalli U, Yallampalli C. Protein restriction during pregnancy induces hypertension and impairs endothelium-dependent vascular function in adult female offspring. J. Vasc. Res.46, 229–239 (2009).
  • Bellinger L, Sculley DV, Langley-Evans SC. Exposure to undernutrition in fetal life determines fat distribution, locomotor activity and food intake in ageing rats. Int. J. Obes.30(5), 729–738 (2006).
  • Langley SC, Browne RF, Jackson AA. Altered glucose tolerance in rats exposed to maternal low protein diets in utero. Comp. Biochem. Physiol. A Physiol.109, 223–229 (1994).
  • Zambrano E, Bautista CJ, Deás M et al. A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. J. Physiol.571(1), 221–230 (2006).
  • Yates Z, Tarling EJ, Langley-Evans SC, Salter AM. Maternal undernutrition programmes atherosclerosis in the ApoE*3-Leiden mouse. Br. J. Nutr.101(8), 1185–1194 (2009).
  • Petry CJ, Ozanne SE, Wang CL, Hales CN. Early protein restriction and obesity independently induce hypertension in 1-year-old rats. Clin. Sci.93(2), 147–152 (1997).
  • Fernandez-Twinn DS, Wayman A, Ekizoglou S, Martin MS, Hales CN, Ozanne SE. Maternal protein restriction leads to hyperinsulinemia and reduced insulin-signaling protein expression in 21-mo-old female rat offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol.288(2), R368–R373 (2005).
  • Ozanne SE, Nicholas Hales C. Poor fetal growth followed by rapid postnatal catch-up growth leads to premature death. Mech. Ageing Dev.126(8), 852–854 (2005).
  • Roseboom TJ, van der Meulen JH, Osmond C, Barker DJ, Ravelli AC, Bleker OP. Plasma lipid profiles in adults after prenatal exposure to the Dutch famine. Am. J. Clin. Nutr.72(5), 1101–1106 (2000).
  • Symonds ME, Pearce S, Bispham J, Gardner DS, Stephenson T. Timing of nutrient restriction and programming of fetal adipose tissue development. Proc. Nutr. Soc.63(3), 397–403 (2004).
  • Joshi S, Garole V, Daware M, Girigosavi S, Rao S. Maternal protein restriction before pregnancy affects vital organs of offspring in Wistar rats. Metabolism52(1), 13–18 (2003).
  • Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development127, 4195–4202 (2000).
  • Watkins AJ, Ursell E, Panton R et al. Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease. Biol. Reprod.78(2), 299–306 (2008).
  • Oliver MH, Hawkins P, Harding JE. Periconceptional undernutrition alters growth trajectory, endocrine and metabolic responses to fasting in late gestation fetal sheep. Pediatr. Res.57(4), 591–598 (2005).
  • Rumball CW, Bloomfield FH, Oliver MH, Harding JE. Different periods of periconceptional undernutrition have different effects on growth, metabolic and endocrine status in fetal sheep. Pediatr. Res.66(6), 605–613 (2009).
  • Bloomfield FH, Oliver MH, Hawkins P et al. A periconceptional nutritional origin for noninfectious preterm birth. Science300(5619), 606 (2003).
  • Oliver MH, Hawkins P, Breier BH, Van Zijl PL, Sargison SA, Harding JE. Maternal undernutrition during the periconceptual period increases plasma taurine levels and insulin response to glucose but not arginine in the late gestational fetal sheep. Endocrinology142(10), 4576–4579 (2001).
  • Todd SE, Oliver MH, Jaquiery AL, Bloomfield FH, Harding JE. Periconceptional undernutrition of ewes impairs glucose tolerance in their adult offspring. Pediatr. Res.65(4), 409–413 (2009).
  • Hernandez CE, Harding JE, Oliver MH, Bloomfield FH, Held SDE, Matthews LR. Effects of litter size, sex and periconceptional ewe nutrition on side preference and cognitive flexibility in the offspring. Behav. Brain Res.120(1–2), 76–83 (2009).
  • Lea RG, Andrade LP, Rae MT et al. Effects of maternal undernutrition during early pregnancy on apoptosis regulators in the ovine fetal ovary. Reproduction131(1), 113–124 (2006).
  • Kotsampasi B, Chadio S, Papadomichelakis G et al. Effects of maternal undernutrition on the hypothalamic–pituitary–gonadal axis function in female sheep offspring. Reprod. Domest. Anim.44(4), 677–684 (2009).
  • Budge H, Gnanalingham MG, Gardner DS, Mostyn A, Stephenson T, Symonds ME. Maternal nutritional programming of fetal adipose tissue development: long-term consequences for later obesity. Birth Defects Res. C. Embryo Today75(3), 193–199 (2005).
  • Ravelli AC, van der Meulen JH, Michels RP et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet351(9097), 173–177 (1998).
  • Gardner DS, Tingey K, Van Bon BWM et al. Programming of glucose-insulin metabolism in adult sheep after maternal undernutrition. Am. J. Physiol. Regul. Integr. Comp. Physiol.289(4), R947–R954 (2005).
  • Bloomfield FH, Oliver MH, Giannoulias CD, Gluckman PD, Harding JE, Challis JR. Brief undernutrition in late-gestation sheep programs the hypothalamic–pituitary–adrenal axis in adult offspring. Endocrinology144(7), 2933–2940 (2003).
  • Budge H, Dandrea J, Mostyn A et al. Differential effects of fetal number and maternal nutrition in late gestation on prolactin receptor abundance and adipose tissue development in the neonatal lamb. Pediatr. Res.53(2), 302–308 (2003).
  • Brennan KA, Gopalakrishnan GS, Kurlak L et al. Impact of maternal undernutrition and fetal number on glucocorticoid, growth hormone and insulin-like growth factor receptor mRNA abundance in the ovine fetal kidney. Reproduction129(2), 151–159 (2005).
  • Edwards LJ, McMillen IC. Impact of maternal undernutrition during the periconceptional period, fetal number, and fetal sex on the development of the hypothalamo–pituitary adrenal axis in sheep during late gestation. Biol. Reprod.66, 1562–1569 (2002).
  • MacLaughlin SM, Walker SK, Kleemann DO et al. Impact of periconceptional undernutrition on adrenal growth and adrenal insulin-like growth factor and steroidogenic enzyme expression in the sheep fetus during early pregnancy. Endocrinology148(4), 1911–1920 (2007).
  • Rumball CW, Harding JE, Oliver MH, Bloomfield FH. Effects of twin pregnancy and periconceptional undernutrition on maternal metabolism, fetal growth and glucose–insulin axis function in ovine pregnancy. J. Physiol.586(5), 1399–1411 (2008).
  • Rumball CW, Oliver MH, Thorstensen EB et al. Effects of twinning and periconceptional undernutrition on late-gestation hypothalamic–pituitary–adrenal axis function in ovine pregnancy. Endocrinology149(3), 1163–1172 (2008).
  • Jones AP, Assimon SA, Friedman MI. The effect of diet on food intake and adiposity in rats made obese by gestational undernutrition. Physiol. Behav.37(3), 381–386 (1986).
  • Jones AP, Simson EL, Friedman MI. Gestational undernutrition and the development of obesity in rats. J. Nutr.114(8), 1484–1492 (1984).
  • Anguita RM, Sigulem DM, Sawaya AL. Intrauterine food restriction is associated with obesity in young rats. J. Nutr.123, 1421–1428 (1993).
  • McMullen S, Langley-Evans SC. Sex-specific effects of prenatal low-protein and carbenoxolone exposure on renal angiotensin receptor expression in rats. Hypertension46(6), 1374–1380 (2005).
  • Hoppe CC, Evans RG, Bertram JF, Moritz KM. Effects of dietary protein restriction on nephron number in the mouse. Am. J. Physiol. Regul. Integr. Comp. Physiol.292(5), R1768–R1774 (2007).
  • Lingas RI, Matthews SG. A short period of maternal nutrient restriction in late gestation modifies pituitary–adrenal function in adult guinea pig offspring. Neuroendocrinology73(5), 302–311 (2001).
  • Gardner DS, Van Bon BWM, Dandrea J et al. Effect of periconceptional undernutrition and gender on hypothalamic–pituitary–adrenal axis function in young adult sheep. J. Endocrinol.190(2), 203–212 (2006).
  • Ojeda NB, Grigore D, Robertson EB, Alexander BT. Estrogen protects against increased blood pressure in postpubertal female growth restricted offspring. Hypertension50(4), 679–685 (2007).
  • Foecking EM, McDevitt MA, Acosta-Martínez M, Horton TH, Levine JE. Neuroendocrine consequences of androgen excess in female rodents. Horm. Behav.53(5), 673–692 (2008).
  • Abdel-Hakeem AK, Henry TQ, Magee TR et al. Mechanisms of impaired nephrogenesis with fetal growth restriction: altered renal transcription and growth factor expression. Am. J. Obstet. Gynecol.199(3), E251–E252 (2008).
  • Brennan KA, Kaufman S, Reynolds SW et al. Differential effects of maternal nutrient restriction through pregnancy on kidney development and later blood pressure control in the resulting offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol.295(1), R197–R205 (2008).
  • Welham SJM, Riley PR, Wade A, Hubank M, Woolf AS. Maternal diet programs embryonic kidney gene expression. Physiol. Genomics22(1), 48–56 (2005).
  • Henry T, Torday J, Magee T et al. Maternal food restriction inhibits nephrogenesis by disrupting mesonephric mesenchyme ureteric bud signaling [conference abstract]. Early Hum. Dev.83(Suppl. 1), S176 (2007).
  • Woods LL, Weeks DA, Rasch R. Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int.65(4), 1339–1348 (2004).
  • Gilbert JS, Lang AL, Grant AR, Nijland MJ. Maternal nutrient restriction in sheep: hypertension and decreased nephron number in offspring at 9 months of age. J. Physiol.565(1), 137–147 (2005).
  • Painter RC, Roseboom TJ, van Montfrans GA et al. Microalbuminuria in adults after prenatal exposure to the dutch famine. J. Am. Soc. Nephrol.16, 189–194 (2005).
  • Chen C-M, Chou H-S. Effects of maternal undernutrition on glomerular ultrastructure in rat offspring. Pediatr. Neonatol.50(2), 50–53 (2009).
  • Khorram O, Khorram N, Momeni M et al. Maternal undernutrition inhibits angiogenesis in the offspring: a potential mechanism of programmed hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol.293(2), R745–R753 (2007).
  • Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N. Engl. J. Med.348(2), 101–108 (2003).
  • Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R. Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr. Res.49(4), 460–467 (2001).
  • Vehaskari VM, Stewart T, Lafont D, Soyez C, Seth D, Manning J. Kidney angiotensin and angiotensin receptor expression in prenatally programmed hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol.287(2), F262–F267 (2004).
  • Sahajpal V, Ashton N. Increased glomerular angiotensin II binding in rats exposed to a maternal low protein diet in utero. J. Physiol.563(1), 193–201 (2005).
  • Sahajpal V, Ashton N. Renal function and angiotensin AT1 receptor expression in young rats following intrauterine exposure to a maternal low-protein diet. Clin. Sci.104(6), 607–614 (2003).
  • Sherman RC, Langley-Evans SC. Antihypertensive treatment in early postnatal life modulates prenatal dietary influences upon blood pressure in the rat. Clin. Sci.98(3), 269–275 (2000).
  • Ravelli AC, van Der Meulen JH, Osmond C, Barker DJ, Bleker OP. Obesity at the age of 50 y in men and women exposed to famine prenatally. Am. J. Clin. Nutr.70(5), 811–816 (1999).
  • Ford SP, Hess BW, Schwope MM et al. Maternal undernutrition during early to mid-gestation in the ewe results in altered growth, adiposity, and glucose tolerance in male offspring. J. Anim. Sci.85(5), 1285–1294 (2007).
  • Bispham J, Gopalakrishnan GS, Dandrea J et al. Maternal endocrine adaptation throughout pregnancy to nutritional manipulation: consequences for maternal plasma leptin and cortisol and the programming of fetal adipose tissue development. Endocrinology144(8), 3575–3585 (2003).
  • Bispham J, Gardner DS, Gnanalingham MG, Stephenson T, Symonds ME, Budge H. Maternal nutritional programming of fetal adipose tissue development: differential effects on messenger ribonucleic acid abundance for uncoupling proteins and peroxisome proliferator-activated and prolactin receptors. Endocrinology146(9), 3943–3949 (2005).
  • Mostyn A, Wilson V, Dandrea J et al. Ontogeny and nutritional manipulation of mitochondrial protein abundance in adipose tissue and the lungs of postnatal sheep. Br. J. Nutr.90(2), 323–328 (2003).
  • Voehringer DW, Hirschberg DL, Xiao J et al. Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apoptosis. Proc. Natl Acad. Sci. USA97(6), 2680–2685 (2000).
  • Symonds ME, Lomax MA. Maternal and environmental influences on thermoregulation in the neonate. Proc. Nutr. Soc.51(2), 165–172 (1992).
  • Symonds ME, Stephenson T. Maternal nutrient restriction and endocrine programming of fetal adipose tissue development. Biochem. Soc. Trans.27, 97–103 (1999).
  • Lorenzo M, Valverde AM, Teruel T, Benito M. IGF-I is a mitogen involved in differentiation-related gene expression in fetal rat brown adipocytes. J. Cell Biol.123(6), 1567–1575 (1993).
  • Yuen BS, McMillen IC, Symonds ME, Owens PC. Abundance of leptin mRNA in fetal adipose tissue is related to fetal body weight. J. Endocrinol.163(3), R11–R14 (1999).
  • Smith JT, Waddell BJ. Leptin distribution and metabolism in the pregnant rat: transplacental leptin passage increases in late gestation but is reduced by excess glucocorticoids. Endocrinology144(7), 3024–3030 (2003).
  • Yura S, Itoh H, Sagawa N et al. Neonatal exposure to leptin augments diet-induced obesity in leptin-deficient Ob/Ob mice. Obesity16(6), 1289–1295 (2008).
  • Grattan DR. Fetal programming from maternal obesity: eating too much for two? Endocrinology, 149(11), 5345–5347 (2008).
  • Gopalakrishnan GS, Gardner DS, Rhind SM et al. Programming of adult cardiovascular function after early maternal undernutrition in sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol.287(1), R12–R20 (2004).
  • Sebert SP, Hyatt MA, Chan LLY et al. Maternal nutrient restriction between early and midgestation and its impact upon appetite regulation after juvenile obesity. Endocrinology150(2), 634–641 (2009).
  • Yura S, Itoh H, Sagawa N et al. Role of premature leptin surge in obesity resulting from intrauterine undernutrition. Cell Metab.1(6), 371–378 (2005).
  • Breton C, Lukaszewski M-A, Risold P-Y et al. Maternal prenatal undernutrition alters the response of POMC neurons to energy status variation in adult male rat offspring. Am. J. Physiol. Endocrinol. Metab.296(3), E462–E472 (2009).
  • Delahaye F, Breton C, Risold P-Y et al. Maternal perinatal undernutrition drastically reduces postnatal leptin surge and affects the development of arcuate nucleus proopiomelanocortin neurons in neonatal male rat pups. Endocrinology149(2), 470–475 (2008).
  • Vickers MH, Gluckman PD, Coveny AH et al. Neonatal leptin treatment reverses developmental programming. Endocrinology146(10), 4211–4216 (2005).
  • Rhind SM. Effects of maternal nutrition on fetal and neonatal reproductive development and function. Anim. Reprod. Sci.82–83, 169–181 (2004).
  • Lumey LH, Stein AD. Offspring birth weights after maternal intrauterine undernutrition: a comparison within sibships. Am. J. Epidemiol.146(10), 810–819 (1997).
  • Zambrano E, Martínez-Samayoa PM, Bautista CJ et al. Sex differences in transgenerational alterations of growth and metabolism in progeny (F2) of female offspring (F1) of rats fed a low protein diet during pregnancy and lactation. J. Physiol.566(1), 225–236 (2005).
  • Zambrano E. [The transgenerational mechanisms in developmental programming of metabolic diseases]. Rev. Invest. Clin.61(1), 41–52 (2009).
  • Rae MT, Rhind SM, Fowler PA, Miller DW, Kyle CE, Brooks AN. Effect of maternal undernutrition on fetal testicular steroidogenesis during the CNS androgen-responsive period in male sheep fetuses. Reproduction124(1), 33–39 (2002).
  • Teixeira CV, Silandre D, de Souza Santos AM et al. Effects of maternal undernutrition during lactation on aromatase, estrogen, and androgen receptors expression in rat testis at weaning. J. Endocrinol.192(2), 301–311 (2007).
  • Sloboda DM, Hart R, Doherty DA, Pennell CE, Hickey M. Age at menarche: influences of prenatal and postnatal growth. J. Clin. Endocrinol. Metab.92(1), 46–50 (2007).
  • Painter RC, Westendorp RGJ, de Rooij SR, Osmond C, Barker DJP, Roseboom TJ. Increased reproductive success of women after prenatal undernutrition. Hum. Reprod.23(11), 2591–2595 (2008).
  • Da Silva P, Aitken RP, Rhind SM, Racey PA, Wallace JM. Influence of placentally mediated fetal growth restriction on the onset of puberty in male and female lambs. Reproduction122(3), 375–383 (2001).
  • Engelbregt MJT, Houdijk ME, Popp-Snijders AC, Delemarre-Van De Waal HA. The effects of intra-uterine growth retardation and postnatal undernutrition on onset of puberty in male and female rats. Pediatr. Res.48(6), 803–807 (2000).
  • Guzmán C, Cabrera R, Cárdenas M, Larrea F, Nathanielsz PW, Zambrano E. Protein restriction during fetal and neonatal development in the rat alters reproductive function and accelerates reproductive ageing in female progeny. J. Physiol.572(1), 97–108 (2006).
  • Sloboda DM, Howie G, Pleasants AB, Gluckman PD, Vickers MH. Pre- and postnatal nutritional histories influence reproductive maturation and ovarian function in the rat. PLoS ONE4(8), E6744 (2009).
  • Menendez-Patterson A, Menendez E, Fernandez S, Fernandez M, Marin B. Influence of undernutrition during gestation and suckling on development and sexual maturity in the rat. J. Nutr.115(8), 1025–1032 (1985).
  • de Rooij SR, Painter RC, Roseboom TJ et al. Glucose tolerance at age 58 and the decline of glucose tolerance in comparison with age 50 in people prenatally exposed to the Dutch famine. Diabetologia49(4), 637–643 (2006).
  • Economides DL, Nicolaides KH, Gahl WA, Bernardini I, Bottoms S, Evans M. Cordocentesis in the diagnosis of intrauterine starvation. Am. J. Obstet. Gynecol.161(4), 1004 (1989).
  • Economides DL, Proudler A, Nicolaides KH. Plasma insulin in appropriate- and small-for-gestational-age fetuses. Am. J. Obstet. Gynecol.160, 1091–1094 (1989).
  • Economides DL, Nicolaides KH, Gahl W, Bernardini I, Evans MI. Plasma amino acids in appropriate and small-for-gestational age infants. Am. J. Obstet. Gynecol.161, 1219–1227 (1989).
  • Hofman PL, Cutfield WS, Robinson EM, Bergman RN, Menon RK, Gluckman PD. Insulin resistance in short children with intrauterine growth retardation. J. Clin. Endocrinol. Metab.82(2), 402–406 (1997).
  • Leger J, Levy-Marchal C, Bloch J et al. Reduced final height and indications for insulin resistance in 20 year olds born small for gestational age: regional cohort study. BMJ315(7104), 341–347 (1997).
  • Jaquet D, Gaboriau A, Czernichow P, Levy-Marchal C. Insulin resistance early in adulthood in subjects born with intrauterine growth retardation. J. Clin. Endocrinol. Metab.85(4), 1401–1406 (2000).
  • Holemans K, Aerts L, Van Assche FA. Lifetime consequences of abnormal fetal pancreatic development. J. Physiol.547(1), 11–20 (2003).
  • Snoeck A, Remacle C, Reusens B, Hoet JJ. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol. Neonate57(2), 107–118 (1990).
  • Garofano A, Czernichow P, Bréant B. in utero undernutrition impairs rat β-cell development. Diabetologia40(10), 1231–1234 (1997).
  • Garofano A, Czernichow P, Bréant B. β-cell mass and proliferation following late fetal and early postnatal malnutrition in the rat. Diabetologia41(9), 1114–1120 (1998).
  • Fowden AL, Giussani DA, Forhead AJ. Endocrine and metabolic programming during intrauterine development. Early Hum. Dev.81(9), 723–734 (2005).
  • Tarry-Adkins JL, Martin-Gronert MS, Chen JH, Cripps RL, Ozanne SE. Maternal diet influences DNA damage, aortic telomere length, oxidative stress, and antioxidant defense capacity in rats. FASEB J.22(6), 2037–2044 (2008).
  • Park JH, Stoffers DA, Nicholls RD, Simmons RA. Development of Type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J. Clin. Invest.118(6), 2316–2324 (2008).
  • Martin JF, Johnston CS, Han C-T, Benyshek DC. Nutritional origins of insulin resistance: a rat model for diabetes-prone human populations. J. Nutr.130(4), 741–744 (2000).
  • Blondeau B, Avril I, Duchene B, Bréant B. Endocrine pancreas development is altered in foetuses from rats previously showing intra-uterine growth retardation in response to malnutrition. Diabetologia45(3), 394–401 (2002).
  • Seckl JR. Glucocorticoids, developmental ‘programming’ and the risk of affective dysfunction. Prog. Brain Res.167, 17–34 (2008).
  • Li J, Forhead AJ, Dauncey MJ, Gilmour RS, Fowden AL. Control of growth hormone receptor and insulin-like growth factor-I expression by cortisol in ovine fetal skeletal muscle. J. Physiol.541(2), 581–589 (2002).
  • Li J, Gilmour RS, Saunders JC, Dauncey MJ, Fowden AL. Activation of the adult mode of ovine growth hormone receptor gene expression by cortisol during late fetal development. FASEB J.13(3), 545–552 (1999).
  • Li J, Owens JA, Owens PC, Saunders JC, Fowden AL, Gilmour RS. The ontogeny of hepatic growth hormone receptor and insulin-like growth factor I gene expression in the sheep fetus during late gestation: developmental regulation by cortisol. Endocrinology137(5), 1650–1657 (1996).
  • Seckl JR. Glucocorticoids, feto–placental 11β-hydroxysteroid dehydrogenase type 2, and the early life origins of adult disease. Steroids62(1), 89–94 (1997).
  • Lingas R, Dean F, Matthews SG. Maternal nutrient restriction (48 h) modifies brain corticosteroid receptor expression and endocrine function in the fetal guinea pig. Brain Res.846(2), 236–242 (1999).
  • Lesage J, Bondeau B, Grino M, Breant B, Dupouy JP. Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo–pituitary–adrenal axis in the newborn rat. Endocrinology142, 1692–1702 (2001).
  • Jaquiery AL, Oliver MH, Bloomfield FH, Connor KL, Challis JRG, Harding JE. Fetal exposure to excess glucocorticoid is unlikely to explain the effects of periconceptional undernutrition in sheep. J. Physiol.572(1), 109–118 (2006).
  • Seckl JR, Holmes MC. Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nat. Clin. Pract. End. Met.3(6), 479–488 (2007).
  • Connor KL, Challis JRG, van Zijl PL et al. Do alterations in placental 11β-hydroxysteroid dehydrogenase (11β-HSD) activities explain differences in fetal hypothalamic pituitary adrenal (HPA) function following periconceptional undernutrition or twin conception in sheep? Reprod. Sci.16(12), 1201–1212 (2009).
  • Bloomfield FH, Harding JE. Evidence for fetal glucocorticoid excess as a cause of adult cardiovascular disease. Curr. Opin. Endocrinol. Diabetes Care13(6), 523–529 (2006).
  • Jaquiery AL, Oliver MH, Rumball CWH, Bloomfield FH, Harding JE. Undernutrition before mating in ewes impairs the development of insulin resistance during pregnancy. Obstet. Gynecol.114(4), 869–876 (2009).
  • Challis JR, Sloboda D, Matthews SG et al. The fetal placental hypothalamic–pituitary–adrenal (HPA) axis, parturition and post natal health. Mol. Cell. Endocrinol.185(1–2), 135–144 (2001).
  • Lesage J, Sebaai N, Leonhardt M et al. Perinatal maternal undernutrition programs the offspring hypothalamo–pituitary–adrenal (HPA) axis. Stress9(4), 183–198 (2006).
  • Dong F, Ford SP, Nijland MJ, Nathanielsz PW, Ren J. Influence of maternal undernutrition and overfeeding on cardiac ciliary neurotrophic factor receptor and ventricular size in fetal sheep. J. Nutr. Biochem.19(6), 409–414 (2008).
  • Bloomfield FH, Oliver MH, Hawkins P et al. Periconceptional undernutrition in sheep accelerates maturation of the fetal hypothalamic–pituitary–adrenal axis in late gestation. Endocrinology145(9), 4278–4285 (2004).
  • Connor KL, Bloomfield FH, Oliver MH, Harding JE, Challis JRG. Effect of periconceptional undernutrition in sheep on late gestation expression of mRNA and protein from genes involved in fetal adrenal steroidogenesis and placental prostaglandin production. Reprod. Sci.16(6), 573–583 (2009).
  • Edwards LJ, Bryce AE, Coulter CL, McMillen IC. Maternal undernutrition throughout pregnancy increases adrenocorticotrophin receptor and steroidogenic acute regulatory protein gene expression in the adrenal gland of twin fetal sheep during late gestation. Mol. Cell. Endocrinol.196(1–2), 1–10 (2002).
  • Harris HJ, Kotelevtsev Y, Mullins JJ, Seckl JR, Holmes MC. Intracellular regeneration of glucocorticoids by 11β-hydroxysteroid dehydrogenase (11β-HSD)-I plays a key role in regulation of the hypothalamic–pituitary–adrenal axis: analysis of 11β-HSD-I deficient mice. Endocrinology142(1), 114–120 (2001).
  • Bloomfield FH, Phua HH, Connor KL et al. Twins of periconceptionally undernourished (PCUN) ewes have delayed adrenal maturation throughout gestation and decreased hypothalamic–pituitary–adrenal axis (HPAA) negative feedback at the level of the hippocampus. J. Paediatr. Child Health44(Suppl. 1), A39 (2008).
  • Stevens A, Cook A, Rumball CWH et al. Periconceptional undernutrition is associated with epigenetic changes in the POMC gene in the hypothalamus of fetal sheep. Endocrine Abstracts19, P141 (2009).
  • Stevens A, Cook A, Rumball CWH et al. Epigenetic changes of the hypothalamic glucocorticoid receptor gene occur in the ovine fetus in conjunction with periconceptional undernutrition. Endocrine Abstracts19, P142 (2009).
  • Sebaai N, Lesage J, Breton C, Vieau D, Deloof S. Perinatal food deprivation induces marked alterations of the hypothalamo–pituitary–adrenal axis in 8-month-old male rats both under basal conditions and after a dehydration period. Neuroendocrinology79(4), 163–173 (2004).
  • Dutriez-Casteloot I, Breton C, Coupe B et al. Tissue-specific programming expression of glucocorticoid receptors and 11 β-HSDs by maternal perinatal undernutrition in the HPA axis of adult male rats. Horm. Metab. Res.40(4), 257–261 (2008).
  • Chadio SE, Kotsampasi B, Papadomichelakis G et al. Impact of maternal undernutrition on the hypothalamic–pituitary–adrenal axis responsiveness in sheep at different ages postnatal. J. Endocrinol.192(3), 495–503 (2007).
  • Oliver M, Todd S, Bloomfield F, Jaquiery A, Harding J. Cortisol response to AVP+CRH challenge is reduced in lambs born to ewes undernourished during the periconceptional period. J. Paediatr. Child Health44(Suppl. 1), A39 (2008).
  • Sloboda DM, Moss TJ, Gurrin LC, Newnham JP, Challis JR. The effect of prenatal betamethasone administration on postnatal ovine hypothalamic–pituitary–adrenal function. J. Endocrinol.172(1), 71–81 (2002).
  • Sloboda DM, Moss TJ, Li S et al. Prenatal betamethasone exposure results in pituitary–adrenal hyporesponsiveness in adult sheep. Am. J. Physiol. Endocrinol. Metab.292(1), E61–E70 (2007).
  • Bauer MK, Breier BH, Harding JE, Veldhuis JD, Gluckman PD. The fetal somatotropic axis during long term maternal undernutrition in sheep: evidence for nutritional regulation in utero. Endocrinology136(3), 1250–1257 (1995).
  • Waters MJ, Kaye PL. The role of growth hormone in fetal development. Growth Horm. IGF Res.12(3), 137–146 (2002).
  • Woods K, Camacho-Hubner C, Savage MO, Clarke AJL. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor 1 gene. N. Engl. J. Med.335(18), 1363–1367 (1996).
  • Russell WE. Endocrine and other factors affecting growth. In: Fetal and Neonatal Physiology. Polin RA, Fox WW (Eds). WB Saunders Company, PA, USA 204–213 (1992).
  • D’Ercole AJ, Stiles AD, Underwood LE. Tissue concentrations of somatomedin C: further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc. Natl Acad. Sci. USA81(3), 935–939 (1984).
  • Nissley SP. Growth factors. In: Principles and Practice of Endocrinology and Metabolism. Becker KL, Bilezikian JP, Bremmer WJ et al. (Eds.). JB Lippincott Company, PA, USA 1315–1321 (1990).
  • Baker J, Liu J-P, Robinson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell75, 79–82 (1993).
  • Bloomfield FH, Harding JE. Experimental aspects of nutrition and fetal growth. Fet. Mat. Med. Rev.10(2), 91–107 (1998).
  • Liu J-P, Baker J, Perkins AS, Robinson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (IGF-I) and type 1 IGF receptor (IGF1r). Cell75, 59–72 (1993).
  • Fowden AL. The insulin-like growth factors and feto–placental growth. Placenta24(8–9), 803–812 (2003).
  • Osgerby JC, Wathes DC, Howard D, Gadd TS. The effect of maternal undernutrition on ovine fetal growth. J. Endocrinol.173(1), 131–141 (2002).
  • Ward MA, Neville TL, Reed JJ et al. Effects of selenium supply and dietary restriction on maternal and fetal metabolic hormones in pregnant ewe lambs. J. Anim. Sci.86(5), 1254–1262 (2008).
  • Oliver MH, Harding JE, Breier BH, Evans PC, Gluckman PD. Glucose but not a mixed amino acid infusion regulates plasma insulin-like growth factor-I concentrations in fetal sheep. Pediatr. Res.34(1), 62–65 (1993).
  • Oliver MH, Harding JE, Breier BH, Gluckman PD. Fetal insulin-like growth factor (IGF)-I and IGF-II are regulated differently by glucose or insulin in the sheep fetus. Reprod. Fertil. Dev.8(1), 167–172 (1996).
  • Liu L, Harding JE, Evans PC, Gluckman PD. Maternal insulin-like growth factor-I infusion alters feto–placental carbohydrate and protein metabolism in pregnant sheep. Endocrinology135(3), 895–900 (1994).
  • Holt RIG. Fetal programming of the growth hormone-insulin-like growth factor axis. Trends Endocrinol. Metabol.13(9), 392–397 (2002).
  • Gallaher BW, Breier BH, Keven CL, Harding JE, Gluckman PD. Fetal programming of insulin-like growth factor (IGF)-I and IGF-binding protein-3: evidence for an altered response to undernutrition in late gestation following exposure to periconceptual undernutrition in the sheep. J. Endocrinol.159, 501–508 (1998).
  • Woodall SM, Breier BH, Johnston BM, Gluckman PD. A model of intrauterine growth retardation caused by chronic maternal undernutrition in the rat: effects on the somatotrophic axis and postnatal growth. J. Endocrinol.150(2), 231–242 (1996).
  • Rae MT, Rhind SM, Kyle CE, Miller DW, Brooks AN. Maternal undernutrition alters triiodothyronine concentrations and pituitary response to GnRH in fetal sheep. J. Endocrinol.173(3), 449–455 (2002).
  • Gatford KL, Clarke IJ, De Blasio MJ, McMillen IC, J SR, Owens JA. Perinatal growth and plasma GH profiles in adolescent and adult sheep. J. Endocrinol.173(1), 151–159 (2002).
  • Woods KA, Van Helvoirt M, Ong KKL et al. The somatotropic axis in short children born small for gestational age: relation to insulin resistance. Pediatr. Res.51(1), 76–80 (2002).
  • Chatelain PG, Nicolino M, Claris O, Salle B, Chaussain J. Multiple hormone resistance in short children born with intrauterine growth retardation? Horm. Res.49(Suppl. 2), 20–22 (1998).
  • de Waal WJ, Hokken-Koelega ACS, Stijnen T, Muinck Keizer-Schrama SMPF, Dropt SLS. Endogenous and stimulated GH secretion, urinary GH excretion, and plasma IGF-I and IGF-II levels in prepubertal children with short stature after intrauterine growth retardation. Clin. Endocrinol.41(5), 621–630 (1994).
  • Flanagan DE, Moore VM, Godsland IF, Cockington RA, Robinson JS, Phillips DIW. Reduced foetal growth and growth hormone secretion in adult life. Clin. Endocrinol.50, 735–740 (1999).
  • Huizinga CT, Oudejans CB, Delemarre-van de Waal HA. Persistent changes in somatostatin and neuropeptide Y mRNA levels but not in growth hormone-releasing hormone mRNA levels in adult rats after intrauterine growth retardation. J. Endocrinol.168(2), 273–281 (2001).
  • Huizinga CT, Oudejans CBM, Steiner RA, Clifton ADK, Delemarre-Van De Waal HA. Effects of intrauterine and early postnatal growth restriction on hypothalamic somatostatin gene expression in the rat. Pediatr. Res.48(6), 815–820 (2000).
  • Huizinga CT, Oudejans CB, Delemarre-Van de Waal HA. Decreased galanin mRNA levels in growth hormone-releasing hormone neurons after perinatally induced growth retardation. J. Endocrinol.170(3), 521–528 (2001).
  • Burrow GN, Fisher DA, Larsen PR. Maternal and fetal thyroid function. N. Engl. J. Med.331(16), 1072–1078 (1994).
  • Chan S, Kilby MD. Thyroid hormone and central nervous system development. J. Endocrinol.165(1), 1–8 (2000).
  • Symonds ME. Pregnancy, parturition and neonatal development: interactions between nutrition and thyroid hormones. Proc. Nutr. Soc.54(2), 329–343 (1995).
  • Dwyer CM, Stickland NC. The effects of maternal undernutrition on maternal and fetal serum insulin-like growth factors, thyroid hormones and cortisol in the guinea pig. J. Dev. Physiol.18(6), 303–313 (1992).
  • De Blasio MJ, Gatford KL, Robinson JS, Owens JA. Placental restriction alters circulating thyroid hormone in the young lamb postnatally. Am. J. Physiol. Regul. Integr. Comp. Physiol.291(4), R1016–R1024 (2006).
  • Chan SY, Andrews MH, Lingas R et al. Maternal nutrient deprivation induces sex-specific changes in thyroid hormone receptor and deiodinase expression in the fetal guinea pig brain. J. Physiol.566(2), 467–480 (2005).
  • Thorpe-Beeston JG, Nicolaides KH, Snijders RJ, Felton CV, McGregor AM. Thyroid function in small for gestational age fetuses. Obstet. Gynecol.77(5), 701–706 (1991).
  • Kilby MD, Verhaeg J, Gittoes N, Somerset DA, Clark PMS, Franklyn JA. Circulating thyroid hormone concentrations and placental thyroid hormone receptor expression in normal human pregnancy and pregnancy complicated by intrauterine growth restriction (IUGR). J. Clin. Endocrinol. Metab.83(8), 2964–2971 (1998).
  • Kilby MD, Gittoes N, McCabe C, Verhaeg J, Franklyn JA. Expression of thyroid receptor isoforms in the human fetal central nervous system and the effects of intrauterine growth restriction. Clin. Endocrinol.53(4), 469–477 (2000).
  • Mahajan SD, Aalinkeel R, Singh S, Shah P, Gupta N, Kochupillai N. Thyroid hormone dysregulation in intrauterine growth retardation associated with maternal malnutrition and/or anemia. Horm. Metab. Res.37(10), 633–640 (2005).
  • Jacobsen BB, Hummer L. Changes in serum concentrations of thyroid hormones and thyroid hormone-binding proteins during early infancy: studies in healthy fullterm, small-for-gestational age and preterm infants aged 7 to 240 days. Acta Paediatr.68(4), 411–418 (1979).
  • Jacobsen BB, Andersen HJ, Peitersen B, Dige-Petersen H, Hummer L. Serum levels of thyrotropin, thyroxine and triiodothyronine in fullterm, small-for-gestational age and preterm newborn babies. Acta Paediatr.66(6), 681–687 (1977).
  • Fetoui H, Bouaziz H, Mahjoubi-Samet A, Soussia L, Guermazi F, Zeghal N. Food restriction induced thyroid changes and their reversal after refeeding in female rats and their pups. Acta Biol. Hung.57(4), 391–402 (2006).
  • Ramos CF, Lima APS, Teixeira CV, Brito PD, Moura EG. Thyroid function in post-weaning rats whose dams were fed a low-protein diet during suckling. Braz. J. Med. Biol. Res.30, 133–137 (1997).
  • Passos MCF, da Fonte Ramos C, Dutra SCP, Mouço T, de Moura EG. Long-term effects of malnutrition during lactation on the thyroid function of offspring. Horm. Metab. Res.34(1), 40–43 (2002).
  • Moura E, Passos M. Neonatal programming of body weight regulation and energetic metabolism. Biosci. Rep.25, 251–269 (2005).
  • de Escobar GM, Obregón MJ, del Rey FE. Iodine deficiency and brain development in the first half of pregnancy. Public Health Nutr.10(12A), 1554–1570 (2007).
  • Boyages SC, Halpern J-P, Maberly GF et al. A comparative study of neurological and myxedematous endemic cretinism in western China. J. Clin. Endocrinol. Metab.67(6), 1262–1271 (1988).
  • Black RE, Allen LH, Bhutta ZA et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet371(9608), 243–260 (2008).
  • Inskip HM, Crozier SR, Godfrey KM et al. Women’s compliance with nutrition and lifestyle recommendations before pregnancy: general population cohort study. BMJ338(7694), 586–589 (2009).
  • Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J. Nutr.135(6), 1382–1386 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.