25
Views
4
CrossRef citations to date
0
Altmetric
Review

Macrovascular complications of diabetes in atherosclerosisprone mice

&
Pages 89-98 | Published online: 10 Jan 2014

References

  • American Heart Association. Heart disease and stroke statistics – 2007 update. A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation115, e69–e171 (2007).
  • Fox CS, Coady S, Sorlie PD et al. Trends in cardiovascular complications of diabetes. JAMA292, 2495–2499 (2004).
  • Kannel WB, McGee DL. Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes Care2, 120–126 (1979).
  • Lundberg V, Stegmayr B, Asplund K et al. Diabetes as a risk factor for myocardial infarction: population and gender perspectives. J. Intern. Med.241, 485–492 (1997).
  • Liao Y, Cooper RS, Ghali JK et al. Sex differences in the impact of coexistent diabetes on survival in patients with coronary heart disease. Diabetes Care16, 708–713 (1993).
  • Hu FB, Stampfer MJ, Solomon CG et al. The impact of diabetes mellitus on mortality from all causes and coronary heart disease in women: 20 years of follow-up. Arch. Intern. Med.161, 1717–1723 (2001).
  • Buse JB, Ginsberg HN, Bakris GL et al. Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation115, 114–126 (2007).
  • Grundy SM, Howard B, Smith S Jr et al. Prevention Conference VI: diabetes and cardiovascular disease: executive summary: conference proceeding for healthcare professionals from a special writing group of the American Heart Association. Circulation105(18), 2231–9 (2002).
  • Hsueh W, Abel ED, Breslow JL et al. Recipes for creating animal models of diabetic cardiovascular disease. Circ. Res.100(10), 1415–1427 (2007).
  • Wu K, Huan Y. Diabetic atherosclerosis mouse models. Atherosclerosis191, 241–249 (2007).
  • Kunjathoor VV, Wilson DL, LeBoeuf RC. Increased atherosclerosis in streptozotocin-induced diabetic mice. J. Clin. Invest.97(7), 1767–1773 (1996).
  • Wang Z, Gleichmann H. GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice. Diabetes47(1), 50–56 (1998).
  • Schnedl WJ, Ferber S, Johnson JH, Newgard CB. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells. Diabetes43(11), 1326–1333 (1994).
  • Soro-Paavonen A, Watson AM, Li J et al. Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes57(9), 2461–2469 (2008).
  • Ihara Y, Egashira K, Nakano K et al. Upregulation of the ligand-RAGE pathway via the angiotensin II type I receptor is essential in the pathogenesis of diabetic atherosclerosis. J. Mol. Cell. Cardiol.43(4), 455–464 (2007).
  • Park L, Raman KG, Lee KJ et al. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat. Med.4(9), 1025–1031 (1998).
  • Bucciarelli LG, Wendt T, Qu W et al. RAGE blockade stabilizes established atherosclerosis in diabetic apolipoprotein E-null mice. Circulation106(22), 2827–2835 (2002).
  • Cipollone F, Iezzi A, Fazia M et al. The receptor RAGE as a progression factor amplifying arachidonate-dependent inflammatory and proteolytic response in human atherosclerotic plaques: role of glycemic control. Circulation108, 1070–1077 (2003).
  • Reaven P, Merat S, Casanada F, Sutphin M, Palinski W. Effect of streptozotocin-induced hyperglycemia on lipid profiles, formation of advanced glycation endproducts in lesions, and extent of atherosclerosis in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol.17(10), 2250–6 (1997).
  • Goldberg IJ, Isaacs A, Sehayek E, Breslow JL, Huang LS. Effects of streptozotocin-induced diabetes in apolipoprotein AI deficient mice. Atherosclerosis172(1), 47–53 (2004).
  • Berti JA, Salerno AG, Bighetti EJ, Casquero AC, Boschero AC, Oliveira HC. Effects of diabetes and CETP expression on diet-induced atherosclerosis in LDL receptor-deficient mice. APMIS113(1), 37–44 (2005).
  • Wang J, Takeuchi T, Tanaka S et al. A mutation in the insulin 2 gene induces diabetes with severe pancreatic β-cell dysfunction in the Mody mouse. J. Clin. Invest.103(1), 27–37 (1999).
  • Yoshioka M, Kayo T, Ikeda T, Koizumi A. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes46(5), 887–894 (1997).
  • Eizirik DL, Colli ML, Ortis F. The role of inflammation in insulitis and β-cell loss in Type 1 diabetes. Nat. Rev. Endocrinol.5(4), 219–226 (2009).
  • Zipris D. Epidemiology of Type 1 diabetes and what animal models teach us about the role of viruses in disease mechanisms. Clin. Immunol.131(1), 11–23 (2009).
  • Keren P, George J, Keren G, Harats D. Non-obese diabetic (NOD) mice exhibit an increased cellular immune response to glycated-LDL but are resistant to high fat diet induced atherosclerosis. Atherosclerosis157(2), 285–292 (2001).
  • Renard CB, Kramer F, Johansson F et al. Diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions. J. Clin. Invest.114(5), 659–668 (2004).
  • Van Belle TL, Taylor P, von Herrath MG. Mouse models for Type 1 diabetes. Drug Discov. Today(2009) (In press).
  • Cook S, Auinger P, Li C, Ford ES. Metabolic syndrome rates in United States adolescents, from the National Health and Nutrition Examination Survey, 1999–2002. J. Pediatr.152(2), 165–170 (2008).
  • Weiss R, Dziura J, Burgert T et al. Obesity and the metabolic syndrome in children and adolescents. N. Engl. J. Med.350, 2362–2374 (2004).
  • Hasty AH, Shimano H, Osuga J et al. Severe hypercholesterolemia, hypertriglyceridemia, and atherosclerosis in mice lacking both leptin and the low density lipoprotein receptor. J. Biol. Chem.276(40), 37402–37408 (2001).
  • Wu KK, Wu TJ, Chin J et al. Increased hypercholesterolemia and atherosclerosis in mice lacking both ApoE and leptin receptor. Atherosclerosis181(2), 251–259 (2005).
  • Wendt T, Harja E, Bucciarelli L et al. RAGE modulates vascular inflammation and atherosclerosis in a murine model of Type 2 diabetes. Atherosclerosis185(1), 70–77 (2006).
  • Gruen ML, Saraswathi V, Nuotio-Antar AM, Plummer MR, Coenen KR, Hasty AH. Plasma insulin levels predict atherosclerotic lesion burden in obese hyperlipidemic mice. Atherosclerosis186(1), 54–64 (2006).
  • Schreyer SA, Vick C, Lystig TC, Mystkowski P, LeBoeuf RC. LDL receptor but not apolipoprotein E deficiency increases diet-induced obesity and diabetes in mice. Am. J. Physiol. Endocrinol. Metab.282(1), E207–E214 (2002).
  • Huang ZH, Reardon CA, Mazzone T. Endogenous ApoE expression modulates adipocyte triglyceride content and turnover. Diabetes55(12), 3394–3402 (2006).
  • Gonzalez-Navarro H, Vila-Caballer M, Pastor MF et al. Plasma insulin levels predict the development of atherosclerosis when IRS2 deficiency is combined with severe hypercholesterolemia in apolipoprotein E-null mice. Front. Biosci.12, 2291–2298 (2007).
  • González-Navarro H, Vinué A, Vila-Caballer M et al. Molecular mechanisms of atherosclerosis in metabolic syndrome: role of reduced IRS2-dependent signaling. Arterioscler. Thromb. Vasc. Biol.28(12), 2187–2194 (2008).
  • Biddinger SB, Hernandez-Ono A, Rask-Madsen C et al. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab.7(2), 125–134 (2008).
  • Han S, Liang CP, Westerterp M et al. Hepatic insulin signaling regulates VLDL secretion and atherogenesis in mice. J. Clin. Invest.119(4), 1029–1041 (2009).
  • Han S, Liang CP, DeVries-Seimon T et al. Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell Metab.3(4), 257–266 (2006).
  • Baumgartl J, Baudler S, Scherner M et al. Myeloid lineage cell-restricted insulin resistance protects apolipoprotein E- deficient mice against atherosclerosis. Cell Metab.3(4), 247–256 (2006).
  • Ginsberg HN. Diabetic dyslipidemia: basic mechanisms underlying the common hypertriglyceridemia and low HDL cholesterol levels. Diabetes45(Suppl. 3), S27–S30 (1996).
  • Goldberg IJ, Dansky HM. Diabetic vascular disease: an experimental objective. Arterioscler. Thromb. Vasc. Biol.26(8), 1693–1701 (2006).
  • Mooradian AD. Dyslipidemia in Type 2 diabetes mellitus. Nat. Clin. Pract. Endocrinol. Metab.5(3), 150–159 (2009).
  • Kanter JE, Johansson F, LeBoeuf RC, Bornfeldt KE. Do glucose and lipids exert independent effects on atherosclerotic lesion initiation or progression to advanced plaques? Circ. Res.100(6), 769–781 (2007).
  • Goldberg IJ. Why does diabetes increase atherosclerosis? I don’t know! J. Clin. Invest.114(5), 613–615 (2004).
  • Yi X, Maeda N. α-lipoic acid prevents the increase in atherosclerosis induced by diabetes in apolipoprotein E-deficient mice fed high-fat/low-cholesterol diet. Diabetes55(8), 2238–2244 (2006).
  • Goldberg IJ, Hu Y, Noh HL et al. Decreased lipoprotein clearance is responsible for increased cholesterol in LDL receptor knockout mice with streptozotocin-induced diabetes. Diabetes57(6), 1674–1682 (2008).
  • Calkin AC, Giunti S, Sheehy KJ et al. The HMG-CoA reductase inhibitor rosuvastatin and the angiotensin receptor antagonist candesartan attenuate atherosclerosis in an apolipoprotein E-deficient mouse model of diabetes via effects on advanced glycation, oxidative stress and inflammation. Diabetologia51(9), 1731–1740 (2008).
  • Calkin AC, Cooper ME, Jandeleit-Dahm KA, Allen TJ. Gemfibrozil decreases atherosclerosis in experimental diabetes in association with a reduction in oxidative stress and inflammation. Diabetologia49(4), 766–774 (2006).
  • Zhou M, Xu H, Pan L, Wen J, Liao W, Chen K. Rosiglitazone promotes atherosclerotic plaque stability in fat-fed ApoE-knockout mice. Eur. J. Pharmacol.590(1–3), 297–302 (2008).
  • Hou CJ, Tsai CH, Su CH et al. Diabetes reduces aortic endothelial gap junctions in ApoE-deficient mice: simvastatin exacerbates the reduction. J. Histochem. Cytochem.56(8), 745–752 (2008).
  • Hirsch IB, Brownlee M. Should minimal blood glucose variability become the gold standard of glycemic control? J. Diabetes Complications19(3), 178–181 (2005).
  • Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med.320, 915–924 (1989).
  • Bursell SE, Clermont AC, Aiello LP et al. High-dose vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with Type 1 diabetes. Diabetes Care22(8), 1245–1251 (1999).
  • Lonn E, Yusuf S, Hoogwerf B et al. Effects of vitamin E on cardiovascular and microvascular outcomes in high-risk patients with diabetes: results of the HOPE study and MICRO-HOPE substudy. Diabetes Care25(11), 1919–1927 (2002).
  • Otero P, Bonet B, Herrera E, Rabano A. Development of atherosclerosis in the diabetic BALB/c mice. prevention with vitamin E administration. Atherosclerosis182(2), 259–265 (2005).
  • Paigen B, Ishida BY, Verstuyft J, Winters RB, Albee D. Atherosclerosis susceptibility differences among progenitors of recombinant inbred strains of mice. Arteriosclerosis10(2), 316–323 (1990).
  • Sargeant LA, Wareham NJ, Bingham S et al. Vitamin C and hyperglycemia in the European Prospective Investigation into Cancer–Norfolk (EPIC-Norfolk) study: a population-based study. Diabetes Care23, 726–732 (2000).
  • Sinclair AJ, Taylor PB, Lunec J, Girling AJ, Barnett AH. Low plasma ascorbate levels in patients with Type 2 diabetes mellitus consuming adequate dietary vitamin C. Diabet. Med.11, 893–898 (1994).
  • Will JC, Ford ES, Bowman, BA. Serum vitamin C concentrations and diabetes: findings from the Third National Health and Nutrition Examination Survey, 1988–1994. Am. J. Clin. Nutr.70, 49–52 (1999).
  • Nakata Y, Maeda N. Vulnerable atherosclerotic plaque morphology in apolipoprotein E-deficient mice unable to make ascorbic Acid. Circulation105(12), 1485–1490 (2002).
  • Zhang WJ, Bird KE, McMillen TS, LeBoeuf RC, Hagen TM, Frei B. Dietary α-lipoic acid supplementation inhibits atherosclerotic lesion development in apolipoprotein E-deficient and apolipoprotein E/low-density lipoprotein receptor-deficient mice. Circulation117(3), 421–428 (2008).
  • Lewis P, Stefanovic N, Pete J et al. Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation115(16), 2178–2187 (2007).
  • Chew P, Yuen DY, Koh P et al. Site-specific antiatherogenic effect of the antioxidant ebselen in the diabetic apolipoprotein E-deficient mouse. Arterioscler. Thromb. Vasc. Biol.29(6), 823–830 (2009).
  • Vikramadithyan RK, Hu Y, Noh HL et al. Human aldose reductase expression accelerates diabetic atherosclerosis in transgenic mice. J. Clin. Invest.115(9), 2434–2443 (2005).
  • Yan SF, Ramasamy R, Schmidt AM. The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease. Expert Rev. Mol. Med.11, E9 (2009).
  • Candido R, Jandeleit-Dahm KA, Cao Z et al. Prevention of accelerated atherosclerosis by angiotensin-converting enzyme inhibition in diabetic apolipoprotein E-deficient mice. Circulation106(2), 246–253 (2002).
  • Candido R, Allen TJ, Lassila M et al. Irbesartan but not amlodipine suppresses diabetes-associated atherosclerosis. Circulation109(12), 1536–1542 (2004).
  • Zuccollo A, Shi C, Mastroianni R et al. The thromboxane A2 receptor antagonist S18886 prevents enhanced atherogenesis caused by diabetes mellitus. Circulation112(19), 3001–8 (2005).
  • Lassila M, Allen TJ, Cao Z et al. Imatinib attenuates diabetes-associated atherosclerosis. Arterioscler. Thromb. Vasc. Biol.24(5), 935–942 (2004).
  • World Health Statistics 2009. Gollogly L (Ed.). World Health Organization, Geneva, Switzerland (2009).
  • Lloyd DJ, McCormick J, Helmering J et al. Generation and characterization of two novel mouse models exhibiting the phenotypes of the metabolic syndrome: Apob48-/-Lepob/ob mice devoid of ApoE or Ldlr. Am. J. Physiol. Endocrinol. Metab.294(3), E496–E505 (2008).
  • Malloy SI, Altenburg MK, Knouff C, Lanningham-Foster L, Parks JS, Maeda N. Harmful effects of increased LDLR expression in mice with human APOE*4 but not APOE*3. Arterioscler. Thromb. Vasc. Biol.24(1), 91–97 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.