118
Views
78
CrossRef citations to date
0
Altmetric
Review

Abnormalities in signaling pathways in diabetic nephropathy

, , &
Pages 51-64 | Published online: 10 Jan 2014

References

  • Pagtalunan ME, Miller PL, Jumping-Eagle S et al. Podocyte loss and progressive glomerular injury in Type II diabetes. J. Clin. Invest.99(2), 342–348 (1997).
  • Wharram BL, Goyal M, Wiggins JE et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol.16(10), 2941–2952 (2005).
  • Meyer TW, Bennett PH, Nelson RG. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia42(11), 1341–1344 (1999).
  • Morcos M, Borcea V, Isermann B et al. Effect of α-lipoic acid on the progression of endothelial cell damage and albuminuria in patients with diabetes mellitus: an exploratory study. Diabetes Res. Clin. Pract.52(3), 175–183 (2001).
  • Isermann B, Vinnikov IA, Madhusudhan T et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat. Med.13(11), 1349–1358 (2007).
  • Zhao HJ, Wang S, Cheng H et al. Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. J. Am. Soc. Nephrol.17(10), 2664–2669 (2006).
  • Nakagawa T, Sato W, Glushakova O et al. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J. Am. Soc. Nephrol.18(2), 539–550 (2007).
  • Toyoda M, Najafian B, Kim Y, Caramori ML, Mauer M. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human Type 1 diabetic nephropathy. Diabetes56(8), 2155–2160 (2007).
  • Oldfield MD, Bach LA, Forbes JM et al. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J. Clin. Invest.108(12), 1853–1863 (2001).
  • Heilig CW, Liu Y, England RL et al. D-glucose stimulates mesangial cell GLUT1 expression and basal and IGF-I-sensitive glucose uptake in rat mesangial cells: implications for diabetic nephropathy. Diabetes46(6), 1030–1039 (1997).
  • D’Agord Schaan B, Lacchini S, Bertoluci MC, Irigoyen MC, Machado UF, Schmid H. Increased renal GLUT1 abundance and urinary TGF-β 1 in streptozotocin-induced diabetic rats: implications for the development of nephropathy complicating diabetes. Horm. Metab. Res.33(11), 664–669 (2001).
  • Horie K, Miyata T, Maeda K et al. Immunohistochemical colocalization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy. J. Clin. Invest.100(12), 2995–3004 (1997).
  • Skolnik EY, Yang Z, Makita Z, Radoff S, Kirstein M, Vlassara H. Human and rat mesangial cell receptors for glucose-modified proteins: potential role in kidney tissue remodelling and diabetic nephropathy. J. Exp. Med.174(4), 931–939 (1991).
  • Makita Z, Radoff S, Rayfield EJ et al. Advanced glycosylation end products in patients with diabetic nephropathy. N. Engl. J. Med.325(12), 836–842 (1991).
  • Derubertis FR, Craven PA. Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes43(1), 1–8 (1994).
  • Babazono T, Kapor-Drezgic J, Dlugosz JA, Whiteside C. Altered expression and subcellular localization of diacylglycerol-sensitive protein kinase C isoforms in diabetic rat glomerular cells. Diabetes47(4), 668–676 (1998).
  • Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA. Expression of transforming growth factor β is elevated in human and experimental diabetic nephropathy. Proc. Natl Acad. Sci. USA90(5), 1814–1818 (1993).
  • Ziyadeh FN, Sharma K, Ericksen M, Wolf G. Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-β. J. Clin. Invest.93(2), 536–542 (1994).
  • Marre M, Bernadet P, Gallois Y et al. Relationships between angiotensin I converting enzyme gene polymorphism, plasma levels, and diabetic retinal and renal complications. Diabetes43(3), 384–388 (1994).
  • Doria A, Warram JH, Krolewski AS. Genetic predisposition to diabetic nephropathy. Evidence for a role of the angiotensin I-converting enzyme gene. Diabetes43(5), 690–695 (1994).
  • Huang W, Gallois Y, Bouby N et al. Genetically increased angiotensin I-converting enzyme level and renal complications in the diabetic mouse. Proc. Natl Acad. Sci. USA98(23), 13330–13334 (2001).
  • Takahashi N, Hagaman JR, Kim HS, Smithies O. Minireview: computer simulations of blood pressure regulation by the renin–angiotensin system. Endocrinology144(6), 2184–2190 (2003).
  • Kakoki M, Takahashi N, Jennette JC, Smithies O. Diabetic nephropathy is markedly enhanced in mice lacking the bradykinin B2 receptor. Proc. Natl Acad. Sci. USA101(36), 13302–13305 (2004).
  • Kakoki M, Kizer CM, Yi X et al. Senescence-associated phenotypes in Akita diabetic mice are enhanced by absence of bradykinin B2 receptors. J. Clin. Invest.116(5), 1302–1309 (2006).
  • Allard J, Buleon M, Cellier E et al. ACE inhibitor reduces growth factor receptor expression and signaling but also albuminuria through B2-kinin glomerular receptor activation in diabetic rats. Am. J. Physiol.293(4), F1083–1092 (2007).
  • Alric C, Pecher C, Cellier E et al. Inhibition of IGF-I-induced Erk 1 and 2 activation and mitogenesis in mesangial cells by bradykinin. Kidney Int.62(2), 412–421 (2002).
  • Prabhakar SS. Role of nitric oxide in diabetic nephropathy. Semin. Nephrol.24(4), 333–344 (2004).
  • Mohan S, Reddick RL, Musi N et al. Diabetic eNOS knockout mice develop distinct macro- and microvascular complications. Lab. Invest.88(5), 515–528 (2008).
  • Kanetsuna Y, Takahashi K, Nagata M et al. Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice. Am. J. Pathol.170(5), 1473–1484 (2007).
  • Forbes MS, Thornhill BA, Park MH, Chevalier RL. Lack of endothelial nitric-oxide synthase leads to progressive focal renal injury. Am. J. Pathol.170(1), 87–99 (2007).
  • Dreieicher E, Beck KF, Lazaroski S et al. Nitric oxide inhibits glomerular TGF-β signaling via SMOC-1. J. Am. Soc. Nephrol. (2009).
  • Amiri F, Shaw S, Wang X et al. Angiotensin II activation of the JAK/STAT pathway in mesangial cells is altered by high glucose. Kidney Int.61(5), 1605–1616 (2002).
  • Banes AK, Shaw S, Jenkins J et al. Angiotensin II blockade prevents hyperglycemia-induced activation of JAK and STAT proteins in diabetic rat kidney glomeruli. Am. J. Physiol.286(4), F653–659 (2004).
  • Wang X, Shaw S, Amiri F, Eaton DC, Marrero MB. Inhibition of the Jak/STAT signaling pathway prevents the high glucose-induced increase in TGF-β and fibronectin synthesis in mesangial cells. Diabetes51(12), 3505–3509 (2002).
  • Banes-Berceli AK, Shaw S, Ma G et al. Effect of simvastatin on high glucose- and angiotensin II-induced activation of the JAK/STAT pathway in mesangial cells. Am. J. Physiol.291(1), F116–F121 (2006).
  • Marrero MB, Banes-Berceli AK, Stern DM, Eaton DC. Role of the JAK/STAT signaling pathway in diabetic nephropathy. Am. J. Physiol.290(4), F762–768 (2006).
  • Berthier CC, Zhang H, Schin M et al. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy. Diabetes58(2), 469–477 (2009).
  • Logar CM, Brinkkoetter PT, Krofft RD, Pippin JW, Shankland SJ. Darbepoetin alfa protects podocytes from apoptosis in vitro and in vivo. Kidney Int.72(4), 489–498 (2007).
  • Mori H, Inoki K, Masutani K et al. The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem. Biophys. Res. Comm.384(4), 471–475 (2009).
  • Inoki K. Role of TSC-mTOR pathway in diabetic nephropathy. Diabetes Res. Clin. Pract.82(Suppl. 1), S59–S62 (2008).
  • Lee MJ, Feliers D, Mariappan MM et al. A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am. J. Physiol.292(2), F617–F627 (2007).
  • Lee MN, Ha SH, Kim J et al. Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol. Cell. Biol.29(14), 3991–4001 (2009).
  • Choo AY, Blenis J. Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy. Cell Cycle8(4), 567–572 (2009).
  • Lloberas N, Cruzado JM, Franquesa M et al. Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J. Am. Soc. Nephrol.17(5), 1395–1404 (2006).
  • Hirano T, Kashiwazaki K, Moritomo Y, Nagano S, Adachi M. Albuminuria is directly associated with increased plasma PAI-1 and factor VII levels in NIDDM patients. Diabetes Res. Clin. Pract.36(1), 11–18 (1997).
  • Eddy AA, Giachelli CM. Renal expression of genes that promote interstitial inflammation and fibrosis in rats with protein-overload proteinuria. Kidney Int.47(6), 1546–1557 (1995).
  • Fisher EJ, McLennan SV, Yue DK, Turtle JR. High glucose reduces generation of plasmin activity by mesangial cells. Microvasc. Res.53(2), 173–178 (1997).
  • McLennan SV, Fisher E, Martell SY et al. Effects of glucose on matrix metalloproteinase and plasmin activities in mesangial cells: possible role in diabetic nephropathy. Kidney Int.77(Suppl.), S81–S87 (2000).
  • Lee EA, Seo JY, Jiang Z et al. Reactive oxygen species mediate high glucose-induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney. Kidney Int.67(5), 1762–1771 (2005).
  • Sassen S, Miska EA, Caldas C. MicroRNA-implications for cancer. Virchows Arch.452(1), 1–10 (2007).
  • Kato M, Zhang J, Wang M et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc. Natl Acad. Sci. USA104(9), 3432–3437 (2007).
  • Ina K, Kitamura H, Tatsukawa S, Takayama T, Fujikura Y. Glomerular podocyte endocytosis of the diabetic rat. J. Electron Microsc. (Tokyo)51(4), 275–279 (2002).
  • Akilesh S, Huber TB, Wu H et al. Podocytes use FcRn to clear IgG from the glomerular basement membrane. Proc. Natl Acad. Sci. USA105(3), 967–972 (2008).
  • Kriz W, Hackenthal E, Nobiling R, Sakai T, Elger M, Hahnel B. A role for podocytes to counteract capillary wall distension. Kidney Int.45(2), 369–376 (1994).
  • Durvasula RV, Petermann AT, Hiromura K et al. Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney Int.65(1), 30–39 (2004).
  • Iglesias-de la Cruz MC, Ziyadeh FN, Isono M et al. Effects of high glucose and TGF-β1 on the expression of collagen IV and vascular endothelial growth factor in mouse podocytes. Kidney Int.62(3), 901–913 (2002).
  • Kitsiou PV, Tzinia AK, Stetler-Stevenson WG et al. Glucose-induced changes in integrins and matrix-related functions in cultured human glomerular epithelial cells. Am. J. Physiol. Renal Physiol.284(4), 671–679 (2003).
  • Chen HC, Chen CA, Guh JY, Chang JM, Shin SJ, Lai YH. Altering expression of α3β1 integrin on podocytes of human and rats with diabetes. Life Sci.67(19), 2345–2353 (2000).
  • Regoli M, Bendayan M. Alterations in the expression of the α3 β1 integrin in certain membrane domains of the glomerular epithelial cells (podocytes) in diabetes mellitus. Diabetologia40(1), 15–22 (1997).
  • Jin DK, Fish AJ, Wayner EA et al. Distribution of integrin subunits in human diabetic kidneys. J. Am. Soc. Nephrol.7(12), 2636–2645 (1996).
  • Yoon S, Gingras D, Bendayan M. Alterations of vitronectin and its receptor α(v) integrin in the rat renal glomerular wall during diabetes. Am. J. Kidney Dis.38(6), 1298–1306 (2001).
  • Wei C, Moller CC, Altintas MM et al. Modification of kidney barrier function by the urokinase receptor. Nat. Med.14(1), 55–63 (2008).
  • Munger JS, Huang X, Kawakatsu H et al. The integrin α v β 6 binds and activates latent TGF β 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell96(3), 319–328 (1999).
  • Dessapt C, Baradez MO, Hayward A et al. Mechanical forces and TGFβ1 reduce podocyte adhesion through α3β1 integrin downregulation. Nephrol. Dial. Transplant.124(9), 2645–2655 (2009).
  • Wu DT, Bitzer M, Ju W, Mundel P, Bottinger EP. TGF-β Concentration specifies differential signaling profiles of growth arrest/differentiation and apoptosis in podocytes. J. Am. Soc. Nephrol.16(11), 3211–3221 (2005).
  • Lee EY, Chung CH, Khoury CC et al. Monocyte chemoattractant protein-1/CCR2 loop, inducible by TGF-β, increases podocyte motility and albumin permeability. Am. J. Physiol. Renal Physiol.297(1), F85–F94 (2009).
  • Schiffer M, Bitzer M, Roberts IS et al. Apoptosis in podocytes induced by TGF-β and Smad7. J. Clin. Invest.108(6), 807–816 (2001).
  • Jung KY, Chen K, Kretzler M, Wu C. TGF-β1 regulates the PINCH-1-integrin-linked kinase-α-parvin complex in glomerular cells. J. Am. Soc. Nephrol.18(1), 66–73 (2007).
  • Niranjan T, Murea M, Susztak K. The pathogenic role of notch activation in podocytes. Nephron Exp. Nephrol.111(4), e73–e79 (2009).
  • Niranjan T, Bielesz B, Gruenwald A et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat. Med.14(3), 290–298 (2008).
  • Wada T, Pippin JW, Terada Y, Shankland SJ. The cyclin-dependent kinase inhibitor p21 is required for TGF-β1-induced podocyte apoptosis. Kidney Int.68(4), 1618–1629 (2005).
  • Chow FY, Nikolic-Paterson DJ, Atkins RC, Tesch GH. Macrophages in streptozotocin-induced diabetic nephropathy: potential role in renal fibrosis. Nephrol. Dial. Transplant.19(12), 2987–2996 (2004).
  • Chow FY, Nikolic-Paterson DJ, Ozols E, Atkins RC, Rollin BJ, Tesch GH. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int.69(1), 73–80 (2006).
  • Amann B, Tinzmann R, Angelkort B. ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1. Diabetes Care26(8), 2421–2425 (2003).
  • Chow F, Ozols E, Nikolic-Paterson DJ, Atkins RC, Tesch GH. Macrophages in mouse Type 2 diabetic nephropathy: correlation with diabetic state and progressive renal injury. Kidney Int.65(1), 116–128 (2004).
  • Gu L, Hagiwara S, Fan Q et al. Role of receptor for advanced glycation end-products and signalling events in advanced glycation end-product-induced monocyte chemoattractant protein-1 expression in differentiated mouse podocytes. Nephrol. Dial. Transplant.21(2), 299–313 (2006).
  • Burt D, Salvidio G, Tarabra E et al. The monocyte chemoattractant protein-1/cognate CC chemokine receptor 2 system affects cell motility in cultured human podocytes. Am. J. Pathol.171(6), 1789–1799 (2007).
  • Tarabra E, Giunti S, Barutta F et al. Effect of the Mcp-1/Ccr2 system on nephrin expression in streptozotocin-treated mice and human cultured podocytes. Diabetes58(9), 2109–2118 (2009).
  • Dai C, Stolz DB, Kiss LP, Monga SP, Holzman LB, Liu Y. Wnt/β-catenin signaling promotes podocyte dysfunction and albuminuria. J. Am. Soc. Nephrol.20(9), 1997–2008 (2009).
  • Heikkila E, Ristola M, Endlich K et al. Densin and β-catenin form a complex and co-localize in cultured podocyte cell junctions. Mol. Cell. Biochem.305(1–2), 9–18 (2007).
  • Teixeira Vde P, Blattner SM, Li M et al. Functional consequences of integrin-linked kinase activation in podocyte damage. Kidney Int.67(2), 514–523 (2005).
  • Guo L, Sanders PW, Woods A, Wu C. The distribution and regulation of integrin-linked kinase in normal and diabetic kidneys. Am. J. Pathol.159(5), 1735–1742 (2001).
  • Han SY, Kang YS, Jee YH et al. High glucose and angiotensin II increase b1 integrin and integrin-linked kinase synthesis in cultured mouse podocytes. Cell Tissue Res.323(2), 321–332 (2006).
  • Cooper ME, Vranes D, Youssef S et al. Increased renal expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 in experimental diabetes. Diabetes48(11), 2229–2239 (1999).
  • Baelde HJ, Eikmans M, Lappin DW et al. Reduction of VEGF-A and CTGF expression in diabetic nephropathy is associated with podocyte loss. Kidney Int.71(7), 637–645 (2007).
  • Hohenstein B, Hausknecht B, Boehmer K, Riess R, Brekken RA, Hugo CP. Local VEGF activity but not VEGF expression is tightly regulated during diabetic nephropathy in man. Kidney Int.69(9), 1654–1661 (2006).
  • Han SH, Yang S, Jung DS et al. Gene expression patterns in glucose-stimulated podocytes. Biochem. Biophys. Res. Commun.370(3), 514–518 (2008).
  • Hoshi S, Nomoto K, Kuromitsu J, Tomari S, Nagata M. High glucose induced VEGF expression via PKC and ERK in glomerular podocytes. Biochem. Biophys. Res. Commun.290(1), 177–184 (2002).
  • Lee E-Y, Shim MS, Kim MJ, Hong SY, Shin YG, Chung CH. Angiotensin II receptor blocker attenuates overexpression of vascular endothelial growth factor in diabetic podocytes. Exp. Mol. Med.36(1), 65–70 (2004).
  • Chen S, Lee JS, Iglesias-de la Cruz MC et al. Angiotensin II stimulates {alpha}3(IV) collagen production in mouse podocytes via TGF-β and VEGF signalling: implications for diabetic glomerulopathy. Nephrol. Dial. Transplant.20(7), 1320–1328 (2005).
  • Chuang PY, He JC. Signaling in regulation of podocyte phenotypes. Nephron Physiol.111(2), p9–p15 (2009).
  • Chen S, Kasama Y, Lee JS, Jim B, Marin M, Ziyadeh FN. Podocyte-derived vascular endothelial growth factor mediates the stimulation of alpha3(IV) collagen production by transforming growth factor-β1 in mouse podocytes. Diabetes53(11), 2939–2949 (2004).
  • Ichinose K, Maeshima Y, Yamamoto Y et al. 2-(8-hydroxy-6-methoxy-1-oxo-1h-2-benzopyran-3-yl) propionic acid, an inhibitor of angiogenesis, ameliorates renal alterations in obese Type 2 diabetic mice. Diabetes55(5), 1232–1242 (2006).
  • Yamamoto Y, Maeshima Y, Kitayama H et al. Tumstatin peptide, an inhibitor of angiogenesis, prevents glomerular hypertrophy in the early stage of diabetic nephropathy. Diabetes53(7), 1831–1840 (2004).
  • Ichinose K, Maeshima Y, Yamamoto Y et al. Antiangiogenic endostatin peptide ameliorates renal alterations in the early stage of a Type 1 diabetic nephropathy model. Diabetes54(10), 2891–2903 (2005).
  • Sung SH, Ziyadeh FN, Wang A, Pyagay PE, Kanwar YS, Chen S. Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice. J. Am. Soc. Nephrol.17(11), 3093–3104 (2006).
  • Foster RR, Saleem MA, Mathieson PW, Bates DO, Harper SJ. Vascular endothelial growth factor and nephrin interact and reduce apoptosis in human podocytes. Am. J. Physiol. Renal Physiol.288(1), F48–F57 (2005).
  • Guan F, Villegas G, Teichman J, Mundel P, Tufro A. Autocrine VEGF-A system in podocytes regulates podocin and its interaction with CD2AP. Am. J. Physiol. Renal Physiol.291(2), F422–F428 (2006).
  • Futrakul N, Butthep P, Vongthavarawat V et al. Early detection of endothelial injury and dysfunction in conjunction with correction of hemodynamic maladjustment can effectively restore renal function in Type 2 diabetic nephropathy. Clin. Hemorheol. Microcirc.34(3), 373–381 (2006).
  • Nakagawa T, Kosugi T, Haneda M, Rivard CJ, Long DA. Abnormal angiogenesis in diabetic nephropathy. Diabetes58(7), 1471–1478 (2009).
  • Thomas S, Vanuystel J, Gruden G et al. Vascular endothelial growth factor receptors in human mesangium in vitro and in glomerular disease. J. Am. Soc. Nephrol.11(7), 1236–1243 (2000).
  • Nakagawa T. Uncoupling of the VEGF-endothelial nitric oxide axis in diabetic nephropathy: an explanation for the paradoxical effects of VEGF in renal disease. Am. J. Physiol.292(6), F1665–F1672 (2007).
  • Chen S, Ziyadeh FN. Vascular endothelial growth factor and diabetic nephropathy. Curr. Diab. Rep.8(6), 470–476 (2008).
  • Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp. Cell Res.312(5), 549–560 (2006).
  • Rizkalla B, Forbes JM, Cao Z, Boner G, Cooper ME. Temporal renal expression of angiogenic growth factors and their receptors in experimental diabetes: role of the renin–angiotensin system. J. Hypertens.23(1), 153–164 (2005).
  • Lim HS, Lip GY, Blann AD. Angiopoietin-1 and angiopoietin-2 in diabetes mellitus: relationship to VEGF, glycaemic control, endothelial damage/dysfunction and atherosclerosis. Atherosclerosis180(1), 113–118 (2005).
  • Davis B, Dei Cas A, Long DA et al. Podocyte-specific expression of angiopoietin-2 causes proteinuria and apoptosis of glomerular endothelia. J. Am. Soc. Nephrol.18(8), 2320–2329 (2007).
  • Satchell SC, Anderson KL, Mathieson PW. Angiopoietin 1 and vascular endothelial growth factor modulate human glomerular endothelial cell barrier properties. J. Am. Soc. Nephrol.15(3), 566–574 (2004).
  • Tsukada T, Yokoyama K, Arai T et al. Evidence of association of the ecNOS gene polymorphism with plasma NO metabolite levels in humans. Biochem. Biophys. Res. Comm.245(1), 190–193 (1998).
  • Veldman BA, Spiering W, Doevendans PA et al. The Glu298Asp polymorphism of the NOS 3 gene as a determinant of the baseline production of nitric oxide. J. Hypertens.20(10), 2023–2027 (2002).
  • Nakayama M, Yasue H, Yoshimura M et al. T-786–>C mutation in the 5´-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm. Circulation99(22), 2864–2870 (1999).
  • Ksiazek P, Wojewoda P, Muc K, Buraczynska M. Endothelial nitric oxide synthase gene intron 4 polymorphism in Type 2 diabetes mellitus. Mol. Diagn.7(2), 119–123 (2003).
  • Ezzidi I, Mtiraoui N, Mohamed MB, Mahjoub T, Kacem M, Almawi WY. Association of endothelial nitric oxide synthase Glu298Asp, 4b/a, and -786T>C gene variants with diabetic nephropathy. J. Diabetes Complications22(5), 331–338 (2008).
  • Zanchi A, Moczulski DK, Hanna LS, Wantman M, Warram JH, Krolewski AS. Risk of advanced diabetic nephropathy in Type 1 diabetes is associated with endothelial nitric oxide synthase gene polymorphism. Kidney Int.57(2), 405–413 (2000).
  • Hohenstein B, Hugo CP, Hausknecht B, Boehmer KP, Riess RH, Schmieder RE. Analysis of NO-synthase expression and clinical risk factors in human diabetic nephropathy. Nephrol. Dial. Transplant.23(4), 1346–1354 (2007).
  • Quaggin SE, Coffman TM. Toward a mouse model of diabetic nephropathy: is endothelial nitric oxide synthase the missing link? J. Am. Soc. Nephrol.18(2), 364–366 (2007).
  • Najafian B, Kim Y, Crosson JT, Mauer M. Atubular glomeruli and glomerulotubular junction abnormalities in diabetic nephropathy. J. Am. Soc. Nephrol.14(4), 908–917 (2003).
  • Du XL, Edelstein D, Rossetti L et al. Hyperglycemi-induced mitochondrial superoxide overproduction activates hexosamine pathway and induces plasminogen-activator inhibitor-1 expression by increasing Sp-1 glycosylation. Proc. Natl Acad. Sci. USA97, 12222–12226 (2000).
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature414(6865), 813–820 (2001).
  • Gilbert RE, Marsden PA. Activated protein C and diabetic nephropathy. N. Engl. J. Med.358(15), 1628–1630 (2008).
  • Fujiwara Y, Tagami S, Kawakami Y. Circulating thrombomodulin and hematological alterations in Type 2 diabetic patients with retinopathy. J. Atheroscler.Thromb.5(1), 21–28 (1998).
  • Bader R, Bader H, Grund KE, Mackensen-Haen S, Christ H, Bohle A. Structure and function of the kidney in diabetic glomerulosclerosis. Correlations between morphological and functional parameters. Pathol. Res. Pract.167(2–4), 204–216 (1980).
  • Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC. Structural–functional relationships in diabetic nephropathy. J. Clin. Invest.74(4), 1143–1155 (1984).
  • Fioretto P, Mauer M. Histopathology of diabetic nephropathy. Semin. Nephrol.27(2), 195–207 (2007).
  • Zoja C, Donadelli R, Colleoni S et al. Protein overload stimulates RANTES production by proximal tubular cells depending on NF-κB activation. Kidney Int.53(6), 1608–1615 (1998).
  • Tang S, Leung JC, Abe K et al. Albumin stimulates interleukin-8 expression in proximal tubular epithelial cells in vitro and in vivo. J. Clin. Invest.111(4), 515–527 (2003).
  • Eddy AA, Kim H, Lopez-Guisa J, Oda T, Soloway PD. Interstitial fibrosis in mice with overload proteinuria: deficiency of TIMP-1 is not protective. Kidney Int.58(2), 618–628 (2000).
  • Wang Y, Chen J, Chen L, Tay YC, Rangan GK, Harris DC. Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein. J. Am. Soc. Nephrol.8(10), 1537–1545 (1997).
  • Schmid H, Boucherot A, Yasuda Y et al. Modular activation of nuclear factor-κB transcriptional programs in human diabetic nephropathy. Diabetes55(11), 2993–3003 (2006).
  • Navarro JF, Milena FJ, Mora C, Leon C, Garcia J. Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: effect of angiotensin-converting enzyme inhibition and pentoxifylline administration. Am. J. Nephrol.26(6), 562–570 (2006).
  • Tesch GH. Role of macrophages in complications of Type 2 diabetes. Clin. Exp. Pharmacol. Physiol.34(10), 1016–1019 (2007).
  • Morcos M, Sayed AA, Bierhaus A et al. Activation of tubular epithelial cells in diabetic nephropathy. Diabetes51(12), 3532–3544 (2002).
  • Mizuno M, Sada T, Kato M, Fukushima Y, Terashima H, Koike H. The effect of angiotensin II receptor blockade on an end-stage renal failure model of Type 2 diabetes. J. Cardiovasc. Pharmacol.48(4), 135–142 (2006).
  • Agarwal R. Anti-inflammatory effects of short-term pioglitazone therapy in men with advanced diabetic nephropathy. Am. J. Physiol. Renal Physiol.290(3), F600–F605 (2006).
  • Yozai K, Shikata K, Sasaki M et al. Methotrexate prevents renal injury in experimental diabetic rats via anti-inflammatory actions. J. Am. Soc. Nephrol.16(11), 3326–3338 (2005).
  • Usui HK, Shikata K, Sasaki M et al. Macrophage scavenger receptor-a-deficient mice are resistant against diabetic nephropathy through amelioration of microinflammation. Diabetes56(2), 363–372 (2007).
  • Chander PN, Gealekman O, Brodsky SV et al. Nephropathy in Zucker diabetic fat rat is associated with oxidative and nitrosative stress: prevention by chronic therapy with a peroxynitrite scavenger ebselen. J. Am. Soc. Nephrol.15(9), 2391–2403 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.