69
Views
1
CrossRef citations to date
0
Altmetric
Review

Novel systems biology insights using antifibrotic approaches for diabetic kidney disease

, , &
Pages 127-135 | Published online: 10 Jan 2014

References

  • RamachandraRao SP, Zhu Y, Ravasi T et al. Pirfenidone is renoprotective in diabetic kidney disease. J. Am. Soc. Nephrol.20(8), 1765–1775 (2009).
  • State-specific trends in chronic kidney failure – United States, 1990–2001. MMWR Morb. Mortal. Wkly Rep.53(39), 918–920 (2004).
  • Ewens KG, George RA, Sharma K, Ziyadeh FN, Spielman RS. Assessment of 115 candidate genes for diabetic nephropathy by transmission/disequilibrium test. Diabetes54(11), 3305–3318 (2005).
  • Fioretto P, Steffes MW, Brown DM, Mauer SM. An overview of renal pathology in insulin-dependent diabetes mellitus in relationship to altered glomerular hemodynamics. Am. J. Kidney Dis.20, 549–558 (1992).
  • Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med.329(20), 1456–1462 (1993).
  • Brenner BM, Cooper ME, de Zeeuw D et al. Effects of losartan on renal and cardiovascular outcomes in patients with Type 2 diabetes and nephropathy. N. Engl. J. Med.345(12), 861–869 (2001).
  • Lewis E, Hunsicker L, Clarke A et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to Type 2 diabetes. N. Engl. J. Med.345(12), 851–860 (2001).
  • The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Retinopathy and nephropathy in patients with Type 1 diabetes 4 years after a trial of intensive therapy. N. Engl. J. Med.342(6), 381–389 (2000).
  • Chen S, Lee, JS, Iglesias-de la Cruz MC et al. Angiotensin II stimulates a3(IV) collagen production in mouse podocytes via TGF-β and VEGF signalling: implications for diabetic glomerulopathy. Nephrol. Dial. Transplant.20, 1320–1328 (2005).
  • Ziyadeh FN, Sharma K. Overview: combating diabetic nephropathy. J. Am. Soc. Nephrol.14(5), 1355–1357 (2003).
  • Hasslacher C, Ritz E, Wahl P, Michael C. Similar risks of nephropathy in patients with Type I or Type II diabetes mellitus. Nephrol. Dial. Transplant.4, 859–863 (1989).
  • USRDS: the United States Renal Data System. Am. J. Kidney Dis.42(6 Suppl. 5), 1–230 (2003).
  • Sharma K, Lee S, Han S et al. Two-dimensional fluorescence difference gel electrophoresis analysis of the urine proteome in human diabetic nephropathy. Proteomics5(10), 2648–2655 (2005).
  • Thongboonkerd V, Barati MT, McLeish KR et al. Alterations in the renal elastin-elastase system in Type 1 diabetic nephropathy identified by proteomic analysis. J. Am. Soc. Nephrol.15(3), 650–662 (2004).
  • Ziyadeh F, Hoffman B, Han D et al. Long-term prevention of renal insufficiency excess matrix gene expression and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-β antibody in db/db diabetic mice. Proc. Natl Acad. Sci. USA97, 8015–8020 (2000).
  • Benigni A, Zoja C, Corna D et al. Add-on anti-TGF-β antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat. J. Am. Soc. Neph.14, 1816–1824 (2003).
  • Guha M, Xu ZG, Tung D, Lanting L, Natarajan R. Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of Type 1 and Type 2 diabetes. FASEB J.21(12), 3355–3368 (2007).
  • Riser BL, Denichilo M, Cortes P et al. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J. Am. Soc. Nephrol.11(1), 25–38 (2000).
  • Mifsud S, Kelly D, Qi W et al. Intervention with tranilast attenuates renal pathology and albuminuria in advanced experimental diabetic nephropathy. Nephron Physiol.95, 83–91 (2003).
  • Martin J, Kelly DJ, Mifsud SA et al. Tranilast attenuates cardiac matrix deposition in experimental diabetes: role of transforming growth factor-β. Cardiovasc. Res.65(3), 694–701 (2005).
  • Best PJ, Berger PB, Davis BR et al. Impact of mild or moderate chronic kidney disease on the frequency of restenosis: results from the PRESTO trial. J. Am. Coll. Cardiol.44(9), 1786–1791 (2004).
  • Iyer SN, Hyde DM, Giri SN. Anti-inflammatory effect of pirfenidone in the bleomycin-hamster model of lung inflammation. Inflammation24, 477–491 (2000).
  • Iyer SN, Margolin SB, Hyde DM, Giri SN. Lung fibrosis is ameliorated by pirfenidone fed in diet after the second dose in a three-dose bleomycin-hamster model. Exp. Lung Res.24(1), 119–132 (1998).
  • Cain WC, Stuart RW, Lefkowitz DL, Starnes JD, Margolin S, Lefkowitz SS. Inhibition of tumor necrosis factor and subsequent endotoxin shock by pirfenidone. Int. J. Immunopharmacol.20(12), 685–695 (1998).
  • Cho ME, Smith DC, Branton MH, Penzak SR, Kopp JB. Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol.2(5), 906–913 (2007).
  • Azuma A, Nukiwa T, Tsuboi E et al. Double-blind, placebo-controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med.171(9), 1040–1047 (2005).
  • Park HS, Bao L, Kim YJ et al. Pirfenidone suppressed the development of glomerulosclerosis in the FGS/Kist mouse. J. Korean Med. Sci.18(4), 527–533 (2003).
  • Shimizu T, Kuroda T, Hata S, Fukagawa M, Margolin SB, Kurokawa K. Pirfenidone improves renal function and fibrosis in the post-obstructed kidney. Kidney Int.54(1), 99–109 (1998).
  • Iyer SN, Gurujeyalakshmi G, Giri SN. Effects of pirfenidone on transforming growth factor-β gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J. Pharmacol. Exp. Ther.291(1), 367–373 (1999).
  • Oku H, Shimizu T, Kawabata T et al. Antifibrotic action of pirfenidone and prednisolone: different effects on pulmonary cytokines and growth factors in bleomycin-induced murine pulmonary fibrosis. Eur. J. Pharmacol.590(1–3), 400–408 (2008).
  • Salazar-Montes A, Ruiz-Corro L, Lopez-Reyes A, Castrejon-Gomez E, Armendariz-Borunda J. Potent antioxidant role of pirfenidone in experimental cirrhosis. Eur. J. Pharmacol.595(1–3), 69–77 (2008).
  • Misra HP, Rabideau C. Pirfenidone inhibits NADPH-dependent microsomal lipid peroxidation and scavenges hydroxyl radicals. Mol. Cell. Biochem.204(1–2), 119–126 (2000).
  • Iyer SN, Wild JS, Schiedt MJ, Hyde DM, Margolin SB, Giri SN. Dietary intake of pirfenidone ameliorates bleomycin-induced lung fibrosis in hamsters. J. Lab. Clin. Med.125(6), 779–785 (1995).
  • Davies HR, Richeldi L. Idiopathic pulmonary fibrosis: current and future treatment options. Am. J. Respir. Med.1(3), 211–224 (2002).
  • Raghu G, Johnson WC, Lockhart D, Mageto Y. Treatment of idiopathic pulmonary fibrosis with a new antifibrotic agent, pirfenidone: results of a prospective, open-label Phase II study. Am. J. Respir. Crit. Care Med.159(4 Pt 1), 1061–1069 (1999).
  • Di Sario A, Bendia E, Svegliati Baroni G et al. Effect of pirfenidone on rat hepatic stellate cell proliferation and collagen production. J. Hepatol.37(5), 584–591 (2002).
  • Mirkovic S, Seymour AM, Fenning A et al. Attenuation of cardiac fibrosis by pirfenidone and amiloride in DOCA-salt hypertensive rats. Br. J. Pharmacol.135(4), 961–968 (2002).
  • Fukagawa M, Noda M, Shimizu T, Kurokawa K. Chronic progressive interstitial fibrosis in renal disease – are there novel pharmacological approaches? Nephrol. Dial. Transplant.14(12), 2793–2795 (1999).
  • Shimizu T, Fukagawa M, Kuroda T et al. Pirfenidone prevents collagen accumulation in the remnant kidney in rats with partial nephrectomy. Kidney Int.63(Suppl.), S239–S243 (1997).
  • Shihab FS, Bennett WM, Yi H, Andoh TF. Pirfenidone treatment decreases transforming growth factor-β1 and matrix proteins and ameliorates fibrosis in chronic cyclosporine nephrotoxicity. Am. J. Transplant.2(2), 111–119 (2002).
  • Lee BS, Margolin SB, Nowak RA. Pirfenidone: a novel pharmacological agent that inhibits leiomyoma cell proliferation and collagen production. J. Clin. Endocrinol. Metab.83(1), 219–223 (1998).
  • Dosanjh AK, Wan B, Throndset W, Sherwood S, Morris RE. Pirfenidone: a novel antifibrotic agent with implications for the treatment of obliterative bronchiolitis. Transplant. Proc.30(5), 1910–1911 (1998).
  • Kaneko M, Inoue H, Nakazawa R et al. Pirfenidone induces intercellular adhesion molecule-1 (ICAM-1) down-regulation on cultured human synovial fibroblasts. Clin. Exp. Immunol.113(1), 72–76 (1998).
  • Rual JF, Venkatesan K, Hao T et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature437(7062), 1173–1178 (2005).
  • Stelzl U, Worm U, Lalowski M et al. A human protein–protein interaction network: a resource for annotating the proteome. Cell122(6), 957–968 (2005).
  • Ogawa S, Lozach J, Benner C et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell122(5), 707–721 (2005).
  • Alfarano C, Andrade CE, Anthony K et al. The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res.33, D418–D424 (2005).
  • Joshi-Tope G, Gillespie M, Vastrik I et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res.33, D428–D432 (2005).
  • Peri S, Navarro JD, Amanchy R et al. Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res.13(10), 2363–2371 (2003).
  • Vastrik I, D’Eustachio P, Schmidt E et al. Reactome: a knowledge base of biologic pathways and processes. Genome Biol.8(3), R39 (2007).
  • Remm M, Storm CE, Sonnhammer EL. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J. Mol. Biol.314(5), 1041–1052 (2001).
  • Tatusov RL, Fedorova ND, Jackson JD et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics4, 41 (2003).
  • Chen F, Mackey AJ, Stoeckert CJ Jr, Roos DS. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res.34, D363–D368 (2006).
  • Jensen LJ, Julien P, Kuhn M et al. eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res.36, D250–D254 (2008).
  • Shannon P, Markiel A, Ozier O et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res.13(11), 2498–2504 (2003).
  • Dennis G Jr, Sherman BT, Hosack DA et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol.4(5), P3 (2003).
  • Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc.4(1), 44–57 (2009).
  • Choi WI, Kim Y, Kim Y et al. Eukaryotic translation initiator protein 1A isoform, CCS-3, enhances the transcriptional repression of p21CIP1 by proto-oncogene FBI-1 (Pokemon/ZBTB7A). Cell Physiol. Biochem.23(4–6), 359–370 (2009).
  • Feliers D, Lee MJ, Ghosh-Choudhury G, Bomsztyk K, Kasinath BS. Heterogeneous nuclear ribonucleoprotein K contributes to angiotensin II stimulation of vascular endothelial growth factor mRNA translation. Am. J. Physiol. Renal Physiol.293(2), F607–F615 (2007).
  • Lee MJ, Feliers D, Mariappan MM et al. A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am. J. Physiol. Renal Physiol.292(2), F617–F627 (2007).
  • Kasinath BS, Mariappan MM, Sataranatarajan K, Lee MJ, Feliers D. mRNA translation: unexplored territory in renal science. J. Am. Soc. Nephrol.17(12), 3281–3292 (2006).
  • Mariappan MM, Shetty M, Sataranatarajan K, Choudhury GG, Kasinath BS. Glycogen synthase kinase 3b is a novel regulator of high glucose- and high insulin-induced extracellular matrix protein synthesis in renal proximal tubular epithelial cells. J. Biol. Chem.283(45), 30566–30575 (2008).
  • Sataranatarajan K, Mariappan MM, Lee MJ et al. Regulation of elongation phase of mRNA translation in diabetic nephropathy: amelioration by rapamycin. Am. J. Pathol.171(6), 1733–1742 (2007).
  • Walker PD. The renal biopsy. Arch. Pathol. Lab. Med.133(2), 181–188 (2009).
  • Lu B, Motoyama A, Ruse C, Venable J, Yates JR 3rd. Improving protein identification sensitivity by combining MS and MS/MS information for shotgun proteomics using LTQ-Orbitrap high mass accuracy data. Anal. Chem.80(6), 2018–2025 (2008).
  • Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF-β by anti-TGF-β antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes45(4), 522–530 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.