36
Views
6
CrossRef citations to date
0
Altmetric
Perspective

Promise of endothelial progenitor cell for treatment of diabetic retinopathy

, &
Pages 29-37 | Published online: 10 Jan 2014

References

  • Fong DS, Sharza M, Chen W, Paschal JF, Ariyasu RG, Lee PP. Vision loss among diabetics in a group model health maintenance organization (HMO). Am. J. Ophthalmol.133(2), 236–241 (2002).
  • Early Treatment Diabetic Retinopathy Study Research Group. Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Ophthalmology98(5 Suppl.), 766–785 (1991).
  • Early Treatment Diabetic Retinopathy Study Research Group.Focal photocoagulation treatment of diabetic macular edema. Relationship of treatment effect to fluorescein angiographic and other retinal characteristics at baseline: ETDRS report no. 19. Arch. Ophthalmol.113(9), 1144–1155 (1995).
  • Asahara T, Murohara T, Sullivan A, Silver M, Van Der Zee R, Li T. Isolation of putative progenitor endothelial cells for angiogenesis. Science275, 964–967 (1997).
  • Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood105(7), 2783–2786 (2005).
  • Grant MB, May WS, Caballero S et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat. Med.8(6), 607–612 (2002).
  • Bailey AS, Jiang S, Afentoulis M et al. Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells. Blood103(1), 13–19 (2004).
  • Loomans CJ, Van Haperen R, Duijs JM et al. Differentiation of bone marrow-derived endothelial progenitor cells is shifted into a proinflammatory phenotype by hyperglycemia. Mol. Med.15(5–6), 152–159 (2009).
  • Case J, Ingram DA, Haneline LS. Oxidative stress impairs endothelial progenitor cell function. Antioxid. Redox Signal.10(11), 1895–1907 (2008).
  • Loomans CJ, De Koning EJ, Staal FJ et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of Type 1 diabetes. Diabetes53(1), 195–199 (2004).
  • Funada J, Sekiya M, Hamada M, Hiwada K. Postprandial elevation of remnant lipoprotein leads to endothelial dysfunction. Circ. J.66(2), 127–132 (2002).
  • Imanishi T, Hano T, Sawamura T, Nishio I. Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction. Clin. Exp. Pharmacol. Physiol.31(7), 407–413 (2004).
  • Zhu J, Xu ZK, Miao Y, Liu XL, Zhang H. Changes of inducible protein-10 and regulated upon activation, normal t cell expressed and secreted protein in acute rejection of pancreas transplantation in rats. World J. Gastroenterol.12(26), 4156–4160 (2006).
  • Tamarat R, Silvestre JS, Le Ricousse-Roussanne S et al. Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment. Am. J. Pathol.164(2), 457–466 (2004).
  • Kern TS, Engerman RL. Pharmacological inhibition of diabetic retinopathy: aminoguanidine and aspirin. Diabetes50(7), 1636–1642 (2001).
  • Caballero S, Sengupta N, Afzal A et al. Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes56(4), 960–967 (2007).
  • Fadini GP, Sartore S, Baesso I et al. Endothelial progenitor cells and the diabetic paradox. Diabetes Care29(3), 714–716 (2006).
  • Lee IG, Chae SL, Kim JC. Involvement of circulating endothelial progenitor cells and vasculogenic factors in the pathogenesis of diabetic retinopathy. Eye (Lond.)20(5), 546–552 (2006).
  • Rafat N, Beck GC, Schulte J, Tuettenberg J, Vajkoczy P. Circulating endothelial progenitor cells in malignant gliomas. J. Neurosurg. (2009) (Epub ahead of print).
  • Gehling UM, Ergun S, Schumacher U et al.In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood95(10), 3106–3112 (2000).
  • Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest.105(1), 71–77 (2000).
  • Gulati R, Jevremovic D, Peterson TE et al. Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ. Res.93(11), 1023–1025 (2003).
  • Gulati R, Jevremovic D, Peterson TE et al. Autologous culture-modified mononuclear cells confer vascular protection after arterial injury. Circulation108(12), 1520–1526 (2003).
  • Asahara T, Takahashi T, Masuda H et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J.18(14), 3964–3972 (1999).
  • Wijelath ES, Murray J, Rahman S et al. Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circ. Res.91(1), 25–31 (2002).
  • Eggermann J, Kliche S, Jarmy G et al. Endothelial progenitor cell culture and differentiation In vitro: a methodological comparison using human umbilical cord blood. Cardiovasc. Res.58(2), 478–486 (2003).
  • Fernandez Pujol B, Lucibello FC, Gehling UM et al. Endothelial-like cells derived from human CD14 positive monocytes. Differentiation65(5), 287–300 (2000).
  • Hur J, Yoon CH, Kim HS et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler. Thromb. Vasc. Biol.24(2), 288–293 (2004).
  • Delorme B, Basire A, Gentile C et al. Presence of endothelial progenitor cells, distinct from mature endothelial cells, within human CD146+ blood cells. Thromb. Haemost.94(6), 1270–1279 (2005).
  • Crosby JR, Kaminski WE, Schatteman G et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ. Res.87(9), 728–730. (2000).
  • Yoon CH, Hur J, Park KW et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation112(11), 1618–1627 (2005).
  • Schatteman GC, Dunnwald M, Jiao C. Biology of bone marrow-derived endothelial cell precursors. Am. J. Physiol. Heart Circ. Physiol.292(1), H1–H18 (2007).
  • Kalka C, Masuda H, Takahashi T et al. Vascular endothelial growth factor (165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ. Res.86(12), 1198–1202. (2000).
  • Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC. CD34- blood-derived human endothelial cell progenitors. Stem Cells19(4), 304–312 (2001).
  • Romagnani P, Annunziato F, Liotta F et al. CD14+CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ. Res.97(4), 314–322 (2005).
  • Awad O, Dedkov EI, Jiao C, Bloomer S, Tomanek RJ, Schatteman GC. Differential healing activities of CD34+ and CD14+ endothelial cell progenitors. Arterioscler. Thromb. Vasc. Biol.26(4), 758–764 (2006).
  • Cho HJ, Kim HS, Lee MM et al. Mobilized endothelial progenitor cells by granulocyte–macrophage colony-stimulating factor accelerate reendothelialization and reduce vascular inflammation after intravascular radiation. Circulation108(23), 2918–2925 (2003).
  • George J, Herz I, Goldstein E et al. Number and adhesive properties of circulating endothelial progenitor cells in patients with in-stent restenosis. Arterioscler. Thromb. Vasc. Biol.23(12), e57–e60 (2003).
  • Ghani U, Shuaib A, Salam A et al. Endothelial progenitor cells during cerebrovascular disease. Stroke36(1), 151–153 (2005).
  • Loomans CJ, Wan H, De Crom R et al. Angiogenic murine endothelial progenitor cells are derived from a myeloid bone marrow fraction and can be identified by endothelial no synthase expression. Arterioscler. Thromb. Vasc. Biol.26(8), 1760–1767 (2006).
  • Aicher A, Zeiher AM, Dimmeler S. Mobilizing endothelial progenitor cells. Hypertension45(3), 321–325 (2005).
  • Heissig B, Hattori K, Dias S et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell109(5), 625–637 (2002).
  • Heissig B, Werb Z, Rafii S, Hattori K. Role of c-kit/kit ligand signaling in regulating vasculogenesis. Thromb. Haemost.90(4), 570–576 (2003).
  • Shintani S, Murohara T, Ikeda H et al. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation103(6), 897–903 (2001).
  • Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by AKT-dependent phosphorylation. Nature399(6736), 601–605. (1999).
  • Sorrentino SA, Bahlmann FH, Besler C et al. Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with Type 2 diabetes mellitus: Restoration by the peroxisome proliferator-activated receptor-γ agonist rosiglitazone. Circulation116(2), 163–173 (2007).
  • Thum T, Fraccarollo D, Schultheiss M et al. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes56(3), 666–674 (2007).
  • Vasa M, Breitschopf K, Zeiher AM, Dimmeler S. Nitric oxide activates telomerase and delays endothelial cell senescence. Circ. Res.87(7), 540–542 (2000).
  • Li Calzi S, Purich DL, Chang KH et al. Carbon monoxide and nitric oxide mediate cytoskeletal reorganization in microvascular cells via vasodilator-stimulated phosphoprotein (VASP) phosphorylation: evidence for blunted responsiveness in diabetes. Diabetes57(9), 2488–2494 (2008).
  • Segal MS, Shah R, Afzal A et al. Nitric oxide cytoskeletal-induced alterations reverse the endothelial progenitor cell migratory defect associated with diabetes. Diabetes55(1), 102–109 (2006).
  • Chang KH, Chan-Ling T, Mcfarland EL et al. IGF binding protein-3 regulates hematopoietic stem cell and endothelial precursor cell function during vascular development. Proc. Natl Acad. Sci. USA104(25), 10595–10600 (2007).
  • Ma FX, Zhou B, Chen Z et al. Oxidized low density lipoprotein impairs endothelial progenitor cells by regulation of endothelial nitric oxide synthase. J. Lipid Res.47(6), 1227–1237 (2006).
  • Shin T, Weinstock D, Castro MD et al. Immunohistochemical localization of endothelial and inducible nitric oxide synthase within neurons of cattle with rabies. J. Vet. Med. Sci.66(5), 539–541 (2004).
  • Stadler K, Bonini MG, Dallas S, Duma D, Mason RP, Kadiiska MB. Direct evidence of inos-mediated in vivo free radical production and protein oxidation in acetone-induced ketosis. Am. J. Physiol. Endocrinol. Metab.295(2), E456–462 (2008).
  • Leal EC, Manivannan A, Hosoya K et al. Inducible nitric oxide synthase isoform is a key mediator of leukostasis and blood–retinal barrier breakdown in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci.48(11), 5257–5265 (2007).
  • Nagareddy PR, Xia Z, Mcneill JH, Macleod KM. Increased expression of iNOS is associated with endothelial dysfunction and impaired pressor responsiveness in streptozotocin-induced diabetes. Am. J. Physiol. Heart Circ. Physiol.289(5), H2144–H2152 (2005).
  • Cheng X, Cheng XS, Kuo KH, Pang CC. Inhibition of iNOS augments cardiovascular action of noradrenaline in streptozotocin-induced diabetes. Cardiovasc. Res.64(2), 298–307 (2004).
  • Ellis EA, Guberski DL, Hutson B, Grant MB. Time course of NADH oxidase, inducible nitric oxide synthase and peroxynitrite in diabetic retinopathy in the BBZ/WOR rat. Nitric Oxide6(3), 295–304 (2002).
  • Szabo C, Mabley JG, Moeller SM et al. Part I: pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol. Med.8(10), 571–580 (2002).
  • Kobayashi T, Taguchi K, Takenouchi Y, Matsumoto T, Kamata K. Insulin-induced impairment via peroxynitrite production of endothelium-dependent relaxation and sarco/endoplasmic reticulum Ca2+-ATPase function in aortas from diabetic rats. Free Radic. Biol. Med.43(3), 431–443 (2007).
  • Camici GG, Schiavoni M, Francia P et al. Genetic deletion of p66(shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc. Natl Acad. Sci. USA104(12), 5217–5222 (2007).
  • Sasaki N, Yamashita T, Takaya T et al. Augmentation of vascular remodeling by uncoupled endothelial nitric oxide synthase in a mouse model of diabetes mellitus. Arterioscler. Thromb. Vasc. Biol.28(6), 1068–1076 (2008).
  • Munzel T, Sayegh H, Freeman BA, Tarpey MM, Harrison DG. Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J. Clin. Invest.95(1), 187–194 (1995).
  • Gao J, Zhao WX, Zhou LJ et al. Protective effects of propofol on lipopolysaccharide-activated endothelial cell barrier dysfunction. Inflamm. Res.55(9), 385–392 (2006).
  • Luo T, Xia Z, Ansley DM et al. Propofol dose-dependently reduces tumor necrosis factor-α-induced human umbilical vein endothelial cell apoptosis: Effects on Bcl-2 and Bax expression and nitric oxide generation. Anesth. Analg.100(6), 1653–1659 (2005).
  • Chen YS, Chen KH, Liu CC et al. Propofol-induced vascular permeability change is related to the nitric oxide signaling pathway and occludin phosphorylation. J. Biomed. Sci.14(5), 629–636 (2007).
  • Sasaki K, Heeschen C, Aicher A et al.Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc. Natl Acad. Sci. USA103(39), 14537–14541 (2006).
  • Dimmeler S, Aicher A, Vasa M et al. HMG-COA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/AKT pathway. J. Clin. Invest.108(3), 391–397. (2001).
  • Landmesser U, Engberding N, Bahlmann FH et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation110(14), 1933–1939 (2004).
  • Verma S, Szmitko PE, Anderson TJ. Endothelial function: Ready for prime time? Can. J. Cardiol.20(13), 1335–1339 (2004).
  • Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation113(13), 1708–1714 (2006).
  • Thum T, Bauersachs J. Spotlight on endothelial progenitor cell inhibitors: short review. Vasc. Med.10(Suppl. 1), S59–S64 (2005).
  • Achan V, Broadhead M, Malaki M et al. Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler. Thromb. Vasc. Biol.23(8), 1455–1459 (2003).
  • Dayoub H, Achan V, Adimoolam S et al. Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis: genetic and physiological evidence. Circulation108(24), 3042–3047 (2003).
  • Busik JV, Tikhonenko M, Bhatwadekar A, Opreanu M et al. Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J. Exp. Med. DOI: jem.20090889v1-jem.20090889 (2009) (Epub ahead of print).
  • Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature460(7252), 259–263 (2009).
  • Digman C, Borto D, Nasraway SA Jr. Hyperglycemia in the critically ill. Nutr. Clin. Care8(2), 93–101 (2005).
  • Maaravi Y, Stessman J. Mild, reversible pancytopenia induced by rosiglitazone. Diabetes Care28(6), 1536 (2005).
  • Berria R, Glass L, Mahankali A et al. Reduction in hematocrit and hemoglobin following pioglitazone treatment is not hemodilutional in Type II diabetes mellitus. Clin. Pharmacol. Ther.82(3), 275–281 (2007).
  • Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, Lecka-Czernik B. Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology148(6), 2669–2680 (2007).
  • Khan SS, Solomon MA, Mccoy JP Jr. Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry B Clin. Cytom.64(1), 1–8 (2005).
  • Schachinger V, Erbs S, Elsasser A et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur. Heart J.27(23), 2775–2783 (2006).
  • Erbs S, Linke A, Schachinger V et al. Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction: the Doppler substudy of the reinfusion of enriched progenitor cells and infarct remodeling in acute myocardial infarction (REPAIR-AMI) trial. Circulation116(4), 366–374 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.