21
Views
4
CrossRef citations to date
0
Altmetric
Perspective

Plasma corticosteroid profiling: brief opinion of its current status in clinical diagnosis and research

&
Pages 181-188 | Published online: 10 Jan 2014

References

  • Fraser R, Gower DB, Honour JW et al. Analysis of corticosteroids. In: Steroid Analysis. Makin HLJ, Gower DB (Eds). Blackie Academic and Professional, London, UK (1995).
  • Riepe FG, Krone N, Peter M, Sippell WG, Partsch CJ. Chromatographic system for the simultaneous measurement of plasma 18-hydroxy-11-deoxycorticosterone and 18-hydroxycorticosterone by RIA: reference data for neonates and infants and application to aldosterone synthase deficiency. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.785, 293–301 (2003).
  • Nithipatikom K, Holmes BB, Isbell MA, Gomez-Sanchez CE, Campbell WB. Measurement of steroid synthesis by liquid chromatography-electrospray ionisation ionisation mass spectrometry: inhibition by nitric oxide. Anal. Biochem.337, 203–210 (2005).
  • Guo T, Taylor RL, Singh RJ, Soldin J. Simultaneous determination of 12 steroids by isotope dilution liquid chromatography- photospray ionization tandem mass spectrometry. Clin. Chim. Acta372, 76–82 (2006).
  • Soldin SJ, Soldin OP. Steroid hormone analysis by tandem mass spectrometry. Clin. Chem.55, 101–106 (2009).
  • Storbeck K-H, Kolar NW, Stande M, Swart AC, Prevoo D, Swart P. The development of an ultra performance liquid chromatography-coupled atmospheric pressure chemical ionization mass spectrometry assay for seven adrenal steroids. Anal. Biochem.372, 11–20 (2008).
  • Turpeinen U, Hamalainen E, Stenman UH. Determination of aldosterone in serum by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.862, 113–118 (2008).
  • Fraser R. Inborn errors of corticosteroid biosynthesis and metabolism; their effects on electrolyte metabolism. In: Handbook of Hypertension (Volume 15): Clinical Hypertension. Birkenhager WH, Reid JL, Robertson JIS (Eds). Elsevier, Amsterdam, The Netherlands 420–460 (2009).
  • Bose HS, Sugawara T, Strauss JF, Miller WL. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N. Engl. J. Med.335, 1870–1879 (1996).
  • Saenga P, Klonari Z, Black SM et al. Prenatal diagnosis of congenital lipoid adrenal hyperplasia. J. Clin. Endocr. Metab.80, 200–205 (1995).
  • Degenhart HJ, Visser KHA, Boon H, O’Doherty NJD. Evidence for deficiency of 20αcholesterol hydroxylase activity in adrenal tissue of a patient with lipoid adrenal hyperplasia. Acta Endocrinol. (Kbh)71, 512–518 (1972).
  • Miller WL. Why nobody has P450scc (20,22 desmolase) deficiency. J. Clin. Endocr. Metab.3, 1399–1400 (1998).
  • Rheaume E, Simard J, Morel Y et al. Congenital adrenal hyperplasia due to point mutations in the type II 3β-hydoxysteroid dehydrogenase gene. Nat. Genet.1, 239–245 (1992).
  • Kater CE, Biglieri EG. Disorders of 17α-hydroxylase deficiency. Endocrinol. Metab. Clin. N. Am.23, 341–357 (1994).
  • Martin R, Lin CJ, Costa EMF et al. P450c17 deficiency in Brazilian patients: biochemical diagnosis through progesterone levels confirmed by genotyping. J. Clin. Endocr. Metab.88, 5739–5746 (2003).
  • New MI. Diagnosis and management of congenital adrenal hyperplasia. Ann. Rev. Med.49, 311–328 (1998).
  • White PC, Speiser PW. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr. Rev.21(3), 245–291 (2000).
  • Speiser PW, White PC. Congenital adrenal hyperplasia. N. Engl. J. Med.349, 776–788 (2003).
  • New MI, Nimkarn S. 21-hydroxylase-deficient congenital adrenal hyperplasia. Endocrinol. Metab. Clin. North Am.38(4), 699–718 (2009).
  • Spoudeas HA, Slater JDH, Rumsby G, Honour JW, Brook CGD. Deoxycorticosterone, 11β-hydroxylase and the adrenal cortex. Clin. Endocrinol.39, 245–251 (1993).
  • White PC, Curnow K, Pascoe L. Disorders of 11β-hydroxylase isoenzymes. Endocr. Rev.15, 421–438.
  • Peter M. Congenital adrenal hyperplasia: 11β-hydroxylase deficiency. Semin. Reprod. Med.20, 249–254 (2002).
  • Krone N, Riepe FG, Gotze D et al. Congenital adrenal hyperplasia due to 11-hydroxylase deficiency: functional characterisation of two novel point mutations and a three-base pair deletion in the CYP1B1 gene. J. Clin. Endocr. Metab.90, 3724–3730 (2005).
  • Krone N, Grischuk Y, Muller M et al. Analyzing the functional and structural consequences of two point mutations (P94L and A368D) in the CYP11B1 gene causing congenital adrenal hyperplasia resulting from 11-hydroxylase deficiency. J. Clin. Endoc. Metab.91, 2682–2688 (2006).
  • White PC. Aldosterone deficiency and related disorders. Mol. Cell. Endocrinol.217, 81–87 (2004).
  • Portrat-Doyen S, Tourniaire J, Richard O et al. Isolated aldosterone synthase deficiency caused by simultaneous E198D and V386A mutations in the CYP11B2 gene. J. Clin. Endocr. Metab.83, 4156–4161 (1998).
  • Holst JP, Soldin SJ, Tractenberg RE et al. Use of steroid profiles in determining the cause of adrenal insufficiency. Steroids72, 71–84 (2007).
  • Connell JMC, MacKenzie SM, Freel EM, Fraser R, Davies E. A lifetime of aldosterone excess: long-term consequences of altered regulation of aldosterone production for cardiovascular function. Endocr. Rev.29, 133–154 (2008).
  • White PC, Slutsker L. Haplotype analysis of CYP11B2. Endocr. Res.21, 437–442 (1995).
  • Barr M, MacKenzie SM, Wilkinson D et al. Functional effects of genetic variants in the 11β-hydroxylase (CYP11B1) gene. Clin. Endocr.65, 816–825 (2006).
  • Barr M, MacKenzie SM, Friel E et al. Polymorphic variation in the 11β-hydroxylase gene associates with reduced 11-hydroxylase efficiency. Hypertension49, 113–119 (2007).
  • Holloway CD, MacKenzie SM, Fraser R et al. Effects of genetic variation in the aldosterone synthase (CYP11B2) gene on enzyme function. Clin. Endocr.70, 363–371 (2009).
  • Rainey WE, Saner K, Schimmer BP. Adrenocortical cell lines. Mol. Cell. Endocrinol.228, 23–38 (2004).
  • Bird IM, Hanley NA, Word A et al. Human NCI-H295 adrenocortical carcinoma cells: a model for angiotensin II-responsive aldosterone secretion. Endocrinology133, 1555–1561 (1993).
  • Gazdar AF, Oie H, Shackleton CH et al. Establishment and characterization of a human adrenocortical cancer cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res.50, 5488–5496 (1990).
  • Samandari E, Kempna P, Nuoffer J-M, Hofer G, Mullis PE, Fluck CE. Human adrenal corticocarcinoma NCL-H257R cells produce more androgens than NCL-H259A cells an differ in 3β-hydroxysteroid dehydrogenase and 17,20-lyase activities. J. Endocrinol.195, 459–472 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.