71
Views
33
CrossRef citations to date
0
Altmetric
Review

Insulin secretion and insulin-producing tumors

&
Pages 217-227 | Published online: 10 Jan 2014

References

  • Gerich JE, Charles MA, Grodsky GM. Characterization of the effects of arginine and glucose on glucagon and insulin release from the perfused rat pancreas. J. Clin. Invest.54(4), 833–841 (1974).
  • Dean PM, Matthews EK. Electrical activity in pancreatic islet cells. Nature219(5152), 389–390 (1968).
  • Dean PM, Matthews EK. Glucose-induced electrical activity in pancreatic islet cells. J. Physiol.210(2), 255–264 (1970).
  • Cook DL, Hales CN. Intracellular ATP directly blocks K+ channels in pancreatic β-cells. Nature311(5983), 271–273 (1984).
  • Ashcroft FM, Harrison DE, Ashcroft SJ. Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature312(5993), 446–448 (1984).
  • Schwanstecher M, Loser S, Chudziak F, Panten U. Identification of a 38-kDa high affinity sulfonylurea-binding peptide in insulin-secreting cells and cerebral cortex. J. Biol. Chem.269(27), 17768–17771 (1994).
  • Clement JP 4th, Kunjilwar K, Gonzalez G et al. Association and stoichiometry of K(ATP) channel subunits. Neuron18(5), 827–838 (1997).
  • Ohara-Imaizumi M, Nakamichi Y, Nishiwaki C, Nagamatsu S. Transduction of MIN6 β cells with TAT-syntaxin SNARE motif inhibits insulin exocytosis in biphasic insulin release in a distinct mechanism analyzed by evanescent wave microscopy J. Biol. Chem.277(52), 50805–50811 (2002).
  • Ohara-Imaizumi M, Nishiwaki C, Kikuta T, Nagai S, Nakamichi Y, Nagamatsu S. TIRF imaging of docking and fusion of single insulin granule motion in primary rat pancreatic β-cells: different behaviour of granule motion between normal and Goto–Kakizaki diabetic rat β-cells. Biochem. J.381(Pt 1), 13–18 (2004).
  • Pouli AE, Emmanouilidou E, Zhao C, Wasmeier C, Hutton JC, Rutter GA. Secretory-granule dynamics visualized in vivo with a phogrin-green fluorescent protein chimaera. Biochem. J.333 (Pt 1), 193–199 (1998).
  • Varadi A, Ainscow EK, Allan VJ, Rutter GA. Involvement of conventional kinesin in glucose-stimulated secretory granule movements and exocytosis in clonal pancreatic β-cells. J. Cell. Sci.115(Pt 21), 4177–4189 (2002).
  • Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes49(11), 1751–1760 (2000).
  • Thorens B, Sarkar HK, Kaback HR, Lodish HF. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and β-pancreatic islet cells. Cell55(2), 281–290 (1988).
  • Matschinsky FM. Glucokinase as glucose sensor and metabolic signal generator in pancreatic β-cells and hepatocytes. Diabetes39(6), 647–652 (1990).
  • Barg S, Eliasson L, Renstrom E, Rorsman P. A subset of 50 secretory granules in close contact with L-type Ca2+ channels accounts for first-phase insulin secretion in mouse β-cells. Diabetes51(Suppl. 1), S74–S82 (2002).
  • Dean PM. Ultrastructural morphometry of the pancreatic-cell. Diabetologia9(2), 115–119 (1973).
  • Pedersen MG, Sherman A. Newcomer insulin secretory granules as a highly calcium-sensitive pool. Proc. Natl Acad. Sci. USA106(18), 7432–7436 (2009).
  • Lu D, Mulder H, Zhao P et al. 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proc. Natl Acad. Sci. USA99(5), 2708–2713 (2002).
  • Maechler P, Wollheim CB. Mitochondrial glutamate acts as a messenger in glucose-induced insulin exocytosis. Nature402(6762), 685–689 (1999).
  • Eto K, Suga S, Wakui M et al. NADH shuttle system regulates K(ATP) channel-dependent pathway and steps distal to cytosolic Ca(2+) concentration elevation in glucose-induced insulin secretion. J. Biol. Chem.274(36), 25386–25392 (1999).
  • Corkey BE, Glennon MC, Chen KS, Deeney JT, Matschinsky FM, Prentki M. A role for malonyl-CoA in glucose-stimulated insulin secretion from clonal pancreatic β-cells. J. Biol. Chem.264(36), 21608–21612 (1989).
  • Prentki M, Vischer S, Glennon MC, Regazzi R, Deeney JT, Corkey BE. Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J. Biol. Chem.267(9), 5802–5810 (1992).
  • MacDonald MJ, Fahien LA, Brown LJ, Hasan NM, Buss JD, Kendrick MA. Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am. J. Physiol. Endocrinol. Metab.288(1), E1–E15 (2005).
  • Ronnebaum SM, Ilkayeva O, Burgess SC et al. A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion. J. Biol. Chem.281(41), 30593–30602 (2006).
  • Henquin JC, Nenquin M, Stiernet P, Ahren B. In vivo and in vitro glucose-induced biphasic insulin secretion in the mouse: pattern and role of cytoplasmic Ca2+ and amplification signals in β-cells. Diabetes55(2), 441–451 (2006).
  • MacDonald MJ, McKenzie DI, Walker TM, Kaysen JH. Lack of glyconeogenesis in pancreatic islets: expression of gluconeogenic enzyme genes in islets. Horm. Metab. Res.24(4), 158–160 (1992).
  • Sekine N, Cirulli V, Regazzi R et al. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic β-cells. Potential role in nutrient sensing. J. Biol. Chem.269(7), 4895–4902 (1994).
  • MacDonald MJ. Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion. J. Biol. Chem.270(34), 20051–20058 (1995).
  • Bavamian S, Klee P, Britan A et al. Islet-cell-to-cell communication as basis for normal insulin secretion. Diabetes Obes. Metab.9(Suppl. 2), 118–132 (2007).
  • De Leon DD, Stanley CA. Mechanisms of disease: advances in diagnosis and treatment of hyperinsulinism in neonates. Nat. Clin. Pract. Endocrinol. Metab.3(1), 57–68 (2007).
  • Stanley CA, Lieu YK, Hsu BY et al. Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N. Engl. J. Med.338(19), 1352–1357 (1998).
  • Glaser B, Kesavan P, Heyman M et al. Familial hyperinsulinism caused by an activating glucokinase mutation. N. Engl. J. Med.338(4), 226–230 (1998).
  • Clayton PT, Eaton S, Aynsley-Green A et al. Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of β-oxidation in insulin secretion. J. Clin. Invest.108(3), 457–465 (2001).
  • Molven A, Matre GE, Duran M et al. Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes53(1), 221–227 (2004).
  • Otonkoski T, Jiao H, Kaminen-Ahola N et al. Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic β cells. Am. J. Hum. Genet.81(3), 467–474 (2007).
  • Otonkoski T, Kaminen N, Ustinov J et al. Physical exercise-induced hyperinsulinemic hypoglycemia is an autosomal-dominant trait characterized by abnormal pyruvate-induced insulin release. Diabetes52(1), 199–204 (2003).
  • Goossens A, Gepts W, Saudubray JM et al. Diffuse and focal nesidioblastosis. A clinicopathological study of 24 patients with persistent neonatal hyperinsulinemic hypoglycemia. Am. J. Surg. Pathol.13(9), 766–775 (1989).
  • Yakovac WC, Baker L, Hummeler K. β-cell nesidioblastosis in idiopathic hypoglycemia of infancy. J. Pediatr.79(2), 226–231 (1971).
  • Sempoux C, Guiot Y, Dubois D et al. Pancreatic β-cell proliferation in persistent hyperinsulinemic hypoglycemia of infancy: an immunohistochemical study of 18 cases. Mod. Pathol.11(5), 444–449 (1998).
  • Service FJ, Natt N, Thompson GB et al. Noninsulinoma pancreatogenous hypoglycemia: a novel syndrome of hyperinsulinemic hypoglycemia in adults independent of mutations in Kir6.2 and SUR1 genes. J. Clin. Endocrinol. Metab.84(5), 1582–1589 (1999).
  • Patti ME, McMahon G, Mun EC et al. Severe hypoglycaemia post-gastric bypass requiring partial pancreatectomy: evidence for inappropriate insulin secretion and pancreatic islet hyperplasia. Diabetologia48(11), 2236–2240 (2005).
  • Service GJ, Thompson GB, Service FJ, Andrews JC, Collazo-Clavell ML, Lloyd RV. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N. Engl. J. Med.353(3), 249–254 (2005).
  • Meier JJ, Butler AE, Galasso R, Butler PC. Hyperinsulinemic hypoglycemia after gastric bypass surgery is not accompanied by islet hyperplasia or increased β-cell turnover. Diabetes Care29(7), 1554–1559 (2006).
  • Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. β-cell deficit and increased β-cell apoptosis in humans with Type 2 diabetes. Diabetes52(1), 102–110 (2003).
  • Bonner-Weir S, Weir GC. New sources of pancreatic β-cells. Nat. Biotechnol.23(7), 857–861 (2005).
  • Meier JJ, Butler AE, Saisho Y et al. β-cell replication is the primary mechanism subserving the postnatal expansion of β-cell mass in humans. Diabetes57(6), 1584–1594 (2008).
  • Brelje TC, Scharp DW, Lacy PE et al. Effect of homologous placental lactogens, prolactins, and growth hormones on islet β-cell division and insulin secretion in rat, mouse, and human islets: implication for placental lactogen regulation of islet function during pregnancy. Endocrinology132(2), 879–887 (1993).
  • Van Assche FA, Aerts L, De Prins F. A morphological study of the endocrine pancreas in human pregnancy. Br. J. Obstet. Gynaecol.85(11), 818–820 (1978).
  • Ritzel RA, Butler AE, Rizza RA, Veldhuis JD, Butler PC. Relationship between β-cell mass and fasting blood glucose concentration in humans. Diabetes Care29(3), 717–718 (2006).
  • Georgia S, Bhushan A. β-cell replication is the primary mechanism for maintaining postnatal β cell mass. J. Clin. Invest.114(7), 963–968 (2004).
  • Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature429(6987), 41–46 (2004).
  • Alonso LC, Yokoe T, Zhang P et al. Glucose infusion in mice: a new model to induce β-cell replication. Diabetes56(7), 1792–1801 (2007).
  • Bonner-Weir S, Deery D, Leahy JL, Weir GC. Compensatory growth of pancreatic β-cells in adult rats after short-term glucose infusion. Diabetes38(1), 49–53 (1989).
  • Chick WL. β cell replication in rat pancreatic monolayer cultures. Effects of glucose, tolbutamide, glucocorticoid, growth hormone and glucagon 1. Diabetes22(9), 687–693 (1973).
  • Ueki K, Okada T, Hu J et al. Total insulin and IGF-I resistance in pancreatic β cells causes overt diabetes. Nat. Genet.38(5), 583–588 (2006).
  • Perfetti R, Zhou J, Doyle ME, Egan JM. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology141(12), 4600–4605 (2000).
  • Withers DJ, Gutierrez JS, Towery H et al. Disruption of IRS-2 causes Type 2 diabetes in mice. Nature391(6670), 900–904 (1998).
  • Kushner JA, Ye J, Schubert M et al. Pdx1 restores β-cell function in Irs2 knockout mice. J. Clin. Invest.109(9), 1193–1201 (2002).
  • Terauchi Y, Takamoto I, Kubota N et al. Glucokinase and IRS-2 are required for compensatory β-cell hyperplasia in response to high-fat diet-induced insulin resistance. J. Clin. Invest.117(1), 246–257 (2007).
  • Jhala US, Canettieri G, Screaton RA et al. cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2. Genes Dev.17(13), 1575–1580 (2003).
  • Lingohr MK, Briaud I, Dickson LM et al. Specific regulation of IRS-2 expression by glucose in rat primary pancreatic islet β-cells. J. Biol. Chem.281(23), 15884–15892 (2006).
  • Screaton RA, Conkright MD, Katoh Y et al. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell119(1), 61–74 (2004).
  • Tuttle RL, Gill NS, Pugh W et al. Regulation of pancreatic β-cell growth and survival by the serine/threonine protein kinase Akt1/PKBα. Nat. Med.7(10), 1133–1137 (2001).
  • Bernal-Mizrachi E, Wen W, Stahlhut S, Welling CM, Permutt MA. Islet β cell expression of constitutively active Akt1/PKB α induces striking hypertrophy, hyperplasia, and hyperinsulinemia. J. Clin. Invest.108(11), 1631–1638 (2001).
  • Kitamura T, Nakae J, Kitamura Y et al. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic β cell growth. J. Clin. Invest.110(12), 1839–1847 (2002).
  • Uchida T, Nakamura T, Hashimoto N et al. Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nat. Med.11(2), 175–182 (2005).
  • Tanabe K, Liu Z, Patel S et al. Genetic deficiency of glycogen synthase kinase-3β corrects diabetes in mouse models of insulin resistance. PLoS Biol.6(2), e37 (2008).
  • Pende M, Kozma SC, Jaquet M et al. Hypoinsulinaemia, glucose intolerance and diminished β-cell size in S6K1-deficient mice. Nature408(6815), 994–997 (2000).
  • Alliouachene S, Tuttle RL, Boumard S et al. Constitutively active Akt1 expression in mouse pancreas requires S6 kinase 1 for insulinoma formation. J. Clin. Invest.118(11), 3629–3638 (2008).
  • Johnson JD, Bernal-Mizrachi E, Alejandro EU et al. Insulin protects islets from apoptosis via Pdx1 and specific changes in the human islet proteome. Proc. Natl Acad. Sci. USA103(51), 19575–19580 (2006).
  • Elghazi L, Rachdi L, Weiss AJ, Cras-Meneur C, Bernal-Mizrachi E. Regulation of β-cell mass and function by the Akt/protein kinase B signalling pathway. Diabetes Obes. Metab.9(Suppl. 2), 147–157 (2007).
  • Steiner DF, Oyer PE. The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma. Proc. Natl Acad. Sci. USA57(2), 473–480 (1967).
  • Rhodes CJ. Diabetes mellitus In: A Fundamental and Clinical Text. LeRoith D, Taylor SI, Olefsky JM,(Eds). Lippincott Williams & Wilkins, PA, USA 27–50 (2004).
  • Orci L, Ravazzola M, Storch MJ, Anderson RG, Vassalli JD, Perrelet A. Proteolytic maturation of insulin is a post-Golgi event which occurs in acidifying clathrin-coated secretory vesicles. Cell49(6), 865–868 (1987).
  • Davidson HW, Rhodes CJ, Hutton JC. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic β cell via two distinct site-specific endopeptidases. Nature333(6168), 93–96 (1988).
  • Smeekens SP, Montag AG, Thomas G et al. Proinsulin processing by the subtilisin-related proprotein convertases furin, PC2, and PC3. Proc. Natl Acad. Sci. USA89(18), 8822–8826 (1992).
  • Davidson HW, Hutton JC. The insulin-secretory-granule carboxypeptidase H. Purification and demonstration of involvement in proinsulin processing. Biochem. J.245(2), 575–582 (1987).
  • Roth J, Gorden P, Pastan I. “Big insulin”: a new component of plasma insulin detected by immunoassay. Proc. Natl Acad. Sci. USA61(1), 138–145 (1968).
  • Lazarus NR, Tanese T, Gutman R, Recant L. Synthesis and release of proinsulin and insulin by human insulinoma tissue. J. Clin. Endocrinol. Metab.30(3), 273–281 (1970).
  • Gorden P, Sherman B, Roth J. Proinsulin-like component of circulating insulin in the basal state and in patients and hamsters with islet cell tumors. J. Clin. Invest.50(10), 2113–2122 (1971).
  • Gutman RA, Lazarus NR, Penhos JC, Fajans S, Recant L. Circulating proinsulin-like material in patients with functioning insulinomas. N. Engl. J. Med.284(18), 1003–1008 (1971).
  • Sherman BM, Pek S, Fajans SS, Floyd JC Jr, Conn JW. Plasma proinsulin in patients with functioning pancreatic islet cell tumors. J. Clin. Endocrinol. Metab.35(2), 271–280 (1972).
  • Gorden P, Skarulis MC, Roach P et al. Plasma proinsulin-like component in insulinoma: a 25-year experience. J. Clin. Endocrinol. Metab.80(10), 2884–2887 (1995).
  • Halban PA, Irminger JC. Sorting and processing of secretory proteins. Biochem. J.299(Pt 1), 1–18 (1994).
  • Irminger JC, Vollenweider FM, Neerman-Arbez M, Halban PA. Human proinsulin conversion in the regulated and the constitutive pathways of transfected AtT20 cells. J. Biol. Chem.269(3), 1756–1762 (1994).
  • Nagamatsu S, Steiner DF. Altered glucose regulation of insulin biosynthesis in insulinoma cells: mouse β TC3 cells secrete insulin-related peptides predominantly via a constitutive pathway. Endocrinology130(2), 748–754 (1992).
  • Kao PC, Taylor RL, Service FJ. Proinsulin by immunochemiluminometric assay for the diagnosis of insulinoma. J. Clin. Endocrinol. Metab.78(5), 1048–1051 (1994).
  • Service FJ, McMahon MM, O’Brien PC, Ballard DJ. Functioning insulinoma – incidence, recurrence, and long-term survival of patients: a 60-year study. Mayo Clin. Proc.66(7), 711–719 (1991).
  • Marx S, Spiegel AM, Skarulis MC, Doppman JL, Collins FS, Liotta LA. Multiple endocrine neoplasia type 1: clinical and genetic topics. Ann. Intern. Med.129(6), 484–494 (1998).
  • Anlauf M, Bauersfeld J, Raffel A et al. Insulinomatosis: a multicentric insulinoma disease that frequently causes early recurrent hyperinsulinemic hypoglycemia. Am. J. Surg. Pathol.33(3) (2009).
  • Anlauf M, Schlenger R, Perren A et al. Microadenomatosis of the endocrine pancreas in patients with and without the multiple endocrine neoplasia type 1 syndrome. Am. J. Surg. Pathol.30(5), 560–574 (2006).
  • Guettier JM, Kam A, Chang R et al. Localization of insulinomas to regions of the pancreas by intraarterial calcium stimulation: the NIH experience. J. Clin. Endocrinol. Metab.94(4), 1074–1080 (2009).
  • Hirshberg B, Livi A, Bartlett DL et al. Forty-eight-hour fast: the diagnostic test for insulinoma. J. Clin. Endocrinol. Metab.85(9), 3222–3226 (2000).
  • Hirshberg B, Cochran C, Skarulis MC et al. Malignant insulinoma: spectrum of unusual clinical features. Cancer104(2), 264–272 (2005).
  • Guettier JM, Gorden P. Hypoglycemia. Endocrinol. Metab. Clin. North Am.35(4), 753ix–757ix (2006).
  • Marx SJ, Simonds WF. Hereditary hormone excess: genes, molecular pathways, and syndromes. Endocr. Rev.26(5), 615–661 (2005).
  • Perren A, Roth J, Muletta-Feurer S et al. Clonal analysis of sporadic pancreatic endocrine tumours. J. Pathol.186(4), 363–371 (1998).
  • Barghorn A, Komminoth P, Bachmann D et al. Deletion at 3p25.3–p23 is frequently encountered in endocrine pancreatic tumours and is associated with metastatic progression. J. Pathol.194(4), 451–458 (2001).
  • Barghorn A, Speel EJ, Farspour B et al. Putative tumor suppressor loci at 6q22 and 6q23–q24 are involved in the malignant progression of sporadic endocrine pancreatic tumors. Am. J. Pathol.158(6), 1903–1911 (2001).
  • Speel EJ, Richter J, Moch H et al. Genetic differences in endocrine pancreatic tumor subtypes detected by comparative genomic hybridization. Am. J. Pathol.155(6), 1787–1794 (1999).
  • Zhao J, Moch H, Scheidweiler AF et al. Genomic imbalances in the progression of endocrine pancreatic tumors. Genes Chromosomes Cancer32(4), 364–372 (2001).
  • Jonkers YM, Claessen SM, Perren A et al. Chromosomal instability predicts metastatic disease in patients with insulinomas. Endocr. Relat. Cancer12(2), 435–447 (2005).
  • Zhuang Z, Vortmeyer AO, Pack S et al. Somatic mutations of the MEN1 tumor suppressor gene in sporadic gastrinomas and insulinomas. Cancer Res.57(21), 4682–4686 (1997).
  • Arnold CN, Sosnowski A, Schmitt-Graff A, Arnold R, Blum HE. Analysis of molecular pathways in sporadic neuroendocrine tumors of the gastro–entero–pancreatic system. Int. J. Cancer120(10), 2157–2164 (2007).
  • Pelengaris S, Khan M, Evan GI. Suppression of Myc-induced apoptosis in β cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell109(3), 321–334 (2002).
  • Creutzfeldt W, Creutzfeldt C, Frerichs H, Track NS, Arnold R. Histochemistry, ultrastructure and hormone content of human insulinomas. Horm. Metab. Res. (Suppl. 6), 7–18 (1976).
  • Minn AH, Kayton M, Lorang D et al. Insulinomas and expression of an insulin splice varient. Lancet363(9406), 363–373 (2004).
  • Placzkowski KA, Vella A, Thompson GB et al. Secular trends in the presentation and management of functioning insulinoma at the Mayo Clinic, 1987–2007. J. Clin. Endocrinol. Metab.94(4), 1069–1073 (2009).
  • Brown CK, Bartlett DL, Doppman JL et al. Intraarterial calcium stimulation and intraoperative ultrasonography in the localization and resection of insulinomas. Surgery122(6), 1189–1193 (1997).
  • Pitre J, Soubrane O, Palazzo L, Chapuis Y. Endoscopic ultrasonography for the preoperative localization of insulinomas. Pancreas13(1), 55–60 (1996).
  • Schumacher B, Lubke HJ, Frieling T, Strohmeyer G, Starke AA. Prospective study on the detection of insulinomas by endoscopic ultrasonography. Endoscopy28(3), 273–276 (1996).
  • Ardengh JC, Rosenbaum P, Ganc AT et al. Role of EUS in the preoperative localization of insulinomas compared with spiral CT. Gastrointest. Endosc.51(5), 552–555 (2000).
  • Nesje LB, Varhaug JE, Husebye ES, Odegaard S. Endoscopic ultrasonography for preoperative diagnosis and localization of insulinomas. Scand. J. Gastroenterol.37(6), 732–737 (2002).
  • Zimmer T, Stolzel U, Bader M et al. Endoscopic ultrasonography and somatostatin receptor scintigraphy in the preoperative localisation of insulinomas and gastrinomas. Gut39(4), 562–568 (1996).
  • Krenning EP, Kwekkeboom DJ, Oei HY et al. Somatostatin-receptor scintigraphy in gastroenteropancreatic tumors. An overview of European results. Ann. NY Acad. Sci.733, 416–424 (1994).
  • van Eyck CH, Bruining HA, Reubi JC et al. Use of isotope-labeled somatostatin analogs for visualization of islet cell tumors. World J. Surg.17(4), 444–447 (1993).
  • Oberg K, Astrup L, Eriksson B et al. Guidelines for the management of gastroenteropancreatic neuroendocrine tumours (including bronchopulmonary and thymic neoplasms). Part I – general overview. Acta Oncol.43(7), 617–625 (2004).
  • Oberg K. Somatostatin analog octreotide LAR in gastro–entero–pancreatic tumors. Expert Rev. Anticancer. Ther.9(5), 557–566 (2009).
  • Kauhanen S, Seppanen M, Minn H et al. Fluorine-18-l-dihydroxyphenylalanine (18F-DOPA) positron emission tomography as a tool to localize an insulinoma or β-cell hyperplasia in adult patients. J. Clin. Endocrinol. Metab.92(4), 1237–1244 (2007).
  • Wild D, Macke H, Christ E, Gloor B, Reubi JC. Glucagon-like peptide 1-receptor scans to localize occult insulinomas. N. Engl. J. Med.359(7), 766–768 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.