81
Views
22
CrossRef citations to date
0
Altmetric
Review

Metabolic syndrome is a low-grade systemic inflammatory condition

Pages 577-592 | Published online: 10 Jan 2014

References

  • Reaven GM. Banting lecture 1988: role of insulin resistance in human disease. Diabetes37, 1595–1607 (1988).
  • Grundy SM, Brewer B Jr, Cleema JI, Smith SC, Lenfant C; for the conference participants. Definition of metabolic syndrome. NHLBI/AHA conference proceedings. Circulation109, 433–438 (2004).
  • Das UN. Exercise and inflammation. Eur. Heart J.27, 1385–1386 (2006).
  • Das UN. Anti-inflammatory nature of exercise. Nutrition20, 323–326 (2004).
  • Yamashita N, Hoshida S, Otsu K et al. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J. Exp. Med.189, 1699–1706 (1999).
  • Das UN. A perinatal strategy to prevent coronary heart disease. Nutrition19, 1022–1027 (2002).
  • Albert MA, Glynn RJ, Ridker PM. Plasma concentration of C-reactive protein and the calculated Framingham coronary heart disease risk score. Circulation108, 161–165 (2003).
  • van der Meer IM, de Maat MPM, Hak AE et al. C-reactive protein predicts progression of atherosclerosis measured as various sites in the arterial tree. The Rotterdam study. Stroke33, 2750–2755 (2002).
  • Luc G, Bard J-M, Juhan-Vague I et al. C-reactive protein, interleukin-6, and fibrinogen as predictors of coronary heart disease. The PRIME study. Arterioscler. Thromb. Vasc. Biol.23, 1255–1261 (2003).
  • Engstrom G, Hedblad B, Stavenow L, Lind P, Janzon L, Lindgarde F. Inflammation-sensitive plasma proteins are associated with future weight gain. Diabetes52, 2097–2101 (2003).
  • Mosca L. C-reactive protein – to screen or not to screen. N. Engl. J. Med.347, 1615–1617 (2002).
  • Castell JV, Gomez-Lechon MJ, David M, Horano T, Kishimoto T, Heinrich PC. Recombinant human interleukin-6 (IL-6/BSF-2/HSF) regulates the synthesis of acute phase proteins in human hepatocytes. FEBS Lett.232, 347–350 (1988).
  • Barzilay JI, Abraham L, Heckbert SR et al. The relation of markers of inflammation to the development of glucose disorders in the elderly. Diabetes50, 2384–2389 (2001).
  • Kim MJ, Yoo KH, Park HS et al. Plasma adiponectin and insulin resistance in Korean Type 2 diabetes mellitus. Yonsei Med. J.46, 42–50 (2005).
  • Liu S, Manson JE, Buring JE, Stampfer MJ, Willett WC, Ridker PM. Relation between a diet with a high glycemic load and plasma concentrations of high-sensitivity C-reactive protein in middle-aged women. Am. J. Clin. Nutr.75, 492–498 (2002).
  • Esposito K, Nappo F, Marfella R et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans. Role of oxidative stress. Circulation106, 2067–2072 (2002).
  • Kirwan JP, Krishnan RK, Weaver JA, Del Aguila LF, Evans WJ. Human aging is associated with altered TNF-α production during hyperglycemia and hyperinsulinemia. Am. J. Physiol.281, E1137–E1143 (2001).
  • Lin Y, Rajala MW, Berger JP, Moller DE, Barzilai N, Scherer PE. Hyperglycemia-induced production of acute phase reactants in adipose tissue. J. Biol. Chem.276, 42077–42083 (2001).
  • Fernandez-Real JM, Vayreda M, Richart C et al. Circulating interleukins 6 levels, blood pressure, and insulin sensitivity in apparently healthy men and women. J. Clin. Endocrinol. Metab.86, 1154–1159 (2001).
  • Chae CU, Lee RT, Rifai N, Ridker PM. Blood pressure and inflammation in apparently healthy men. Hypertension38, 399–403 (2001).
  • Brochu M, Tchernof A, Dionne IJ et al. What are the physical characteristics associated with a normal metabolic profile despite a high level of obesity in postmenopausal women? J. Clin. Endocrinol. Metab.86, 1020–1025 (2001).
  • Masuzaki H, Paterson J, Shinyama H et al. A transgenic model of visceral obesity and the metabolic syndrome. Science294, 2166–2170 (2001).
  • Nair S, Lee YH, Lindsay RS et al. 11β-hydroxysteroid dehydrogenase type 1: genetic polymorphisms are associated with Type 2 diabetes in Pima Indians independently of obesity and expression in adipocyte and muscle. Diabetologia47, 1088–1095 (2004).
  • Sandeep TC, Andrew R, Homer N, Andrews RC, Smith K, Walker BR. Increased in vivo regeneration of cortisol in adipose tissue in human obesity and effects of the 11β-hydroxysteroid dehydrogenase type 1 inhibitor carbenoxolone. Diabetes54, 872–879 (2005).
  • Morton NM, Paterson JM, Masuzaki H et al. Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11 β-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes53, 931–938 (2004).
  • Tomlinson JW, Moore J, Cooper MS et al. Regulation of expression of 11β-hydroxysteroid dehydrogenase type 1 in adipose tissue: tissue-specific induction by cytokines. Endocrinology142, 1982–1989 (2001).
  • Han J, Thompson P, Beutler B. Dexamethasone and pentoxifylline inhibit endotoxin-induced cachectin/tumor necrosis factor synthesis at separate points in the signaling pathway. J. Exp. Med.172, 391–394 (1990).
  • Degawa-Yamauchi M, Moss KA, Bovenkerk JE et al. Regulation of adiponectin expression in human adipocytes: effects of adiposity, glucocorticoids, and tumor necrosis factor α. Obes. Res.13, 662–669 (2005).
  • Mohanty P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P. Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J. Clin. Endocrinol. Metab.85, 2970–2973 (2000).
  • Mohanty P, Ghanim H, Hamouda W, Aljada A, Garg R, Dandona P. Both lipid and protein intakes stimulate increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells. Am. J. Clin. Nutr.75, 767–772 (2002).
  • Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, Lee RT. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J. Biol. Chem.279, 30369–30374 (2004).
  • Lin Y, Berg AH, Iyengar P et al. The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J. Biol. Chem.280, 4617–4626 (2005).
  • Das UN. Is insulin an endogenous cardioprotector? Crit. Care6, 389–393 (2002).
  • Fan J, Frey RS, Rahman A, Malik AB. Role of neutrophil NADPH oxidase in the mechanism of tumor necrosis factor-α-induced NF-κB activation and intercellular adhesion molecule-1 expression in endothelial cells. J. Biol. Chem.277, 3404–3411 (2002).
  • Hattori Y, Matsumura M, Kasai K. Vascular smooth muscle cell activation by C-reactive protein. Cardiovasc. Res.58, 186–195 (2003).
  • Devaraj S, Xu DY, Jialal I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells. Circulation107, 398–404 (2003).
  • Furukawa S, Fujita T, Shimabukuro M et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest.114, 1752–1761 (2004).
  • Fortuno A, San Jose G, Moreno MU, Beloqui O, Diez J, Zalba G. Phagocytic NADPH oxidase overactivity underlies oxidative stress in metabolic syndrome. Diabetes55, 209–215 (2006).
  • Mohan I, Das UN. Oxidant stress, anti-oxidants and nitric oxide in non-insulin dependent diabetes mellitus. Med. Sci. Res.25, 55–57 (1997).
  • Kumar KV, Das UN. Lipid peroxides and essential fatty acids in patients with coronary heart disease. J. Nutr. Med.4, 33–37 (1994).
  • Das UN, Kumar KV, Mohan IK. Lipid peroxides and essential fatty acids in patients with diabetes mellitus and diabetic nephropathy. J. Nutr. Med.4, 149–155 (1994).
  • Kumar KV, Das UN. Are free radicals involved in the pathobiology of human essential hypertension? Free Radic. Res. Commun.19, 59–66 (1993).
  • Das UN. Pathobiology of metabolic syndrome X in obese and non-obese South Asian Indians: further discussion and some suggestions. Nutrition19, 560–562 (2003).
  • Das UN. Is obesity an inflammatory condition? Nutrition17, 953–966 (2001).
  • Das UN. Obesity, metabolic syndrome X, and inflammation. Nutrition18, 430–432 (2002).
  • Dandona P, Mohanty P, Ghanim H et al. The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carbonylation. J. Clin. Endocrinol. Metab.86, 355–362 (2001).
  • Das UN. Is insulin an anti-inflammatory molecule? Nutrition17, 409–413 (2001).
  • Jeschke MG, Einspanier R, Klein D et al. Insulin attenuates the systemic inflammatory response. Mol. Med.8, 443–450 (2002).
  • Dandona P, Aljada A, Mohanty P. The anti-inflammatory and potential anti-atherogenic effect of insulin: a new paradigm. Diabetologia45, 924–930 (2002).
  • Otero M, Lago R, Gomez R, Lago F, Gomez-Reino JJ, Gualillo O. Leptin: a metabolic hormone that functions like a proinflammatory adipokine. Drugs News Perspect.19, 21–26 (2006).
  • Mastronardi CA, Srivastava V, Yu WH, Les Dees W, McCann SM. Lipopolysaccharide-induced leptin synthesis and release are differentially controlled by α-melanocyte-stimulating hormone. Neuroimmunomodulation12, 182–188 (2005).
  • Kalhan R, Puthawala K, Agarwal S, Amini SB, Kalhan SC. Altered lipid profile, leptin, insulin, and anthropometry in offspring of South Asian immigrants in the United States. Metabolism50, 1197–1202 (2001).
  • Handoko K, Yang K, Strutt B, Khalil W, Killinger D. Insulin attenuates the stimulatory effects of tumor necrosis factor α on 11β-hydroxysteroid dehydrogenase 1 in human adipose stromal cells. J. Steroid Biochem. Mol. Biol.72, 163–168 (2000).
  • Tomilinson JW, Moore J, Cooper MS et al. Regulation of expression of 11β-hydroxysteroid dehydrogenase type 1 in adipose tissue: tissue-specific induction by cytokines. Endocrinology142, 1982–1989 (2001).
  • Gao F, Gao E, Yue T-L et al. Nitric oxide mediates the anti-apoptotic effect of insulin in myocardial ischemia-reperfusion. The roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation105, 1497–1502 (2002).
  • Das UN. Folic acid says NO to vascular diseases. Nutrition19, 686–692 (2003).
  • Barbato JE, Zuckerbraun BS, Overhaus M, Raman KG, Tzeng E. Nitric oxide modulates vascular inflammation and intimal hyperplasia in insulin resistance and the metabolic syndrome. Am. J. Physiol. Heart Circ. Physiol.289, H228–H236 (2005).
  • Leif A, Mather K. Insulin resistance, metabolic syndrome and vascular diseases: update on mechanistic linkages. Can. J. Cardiol.20(Suppl B), 66B–76B (2004).
  • Jovinge S, Hamsten A, Tomvall P et al. Evidence for a role of tumor necrosis factor α in disturbances of triglycerides and glucose metabolism predisposing to coronary heart disease. Metabolism47, 113–118 (1998).
  • Corica F, Allegra A, Corsonello A et al. Relationship between plasma leptin levels and the tumor necrosis factor α system in obese subjects. Int. J. Obes. Relat. Metab. Disord.23, 355–360 (1999).
  • Chu N-F, Spiegelman D, Rifai N et al. Glycemic status and soluble tumor necrosis factor receptor levels in relation to plasma leptin concentrations among normal weight and overweight US men. Int. J. Obes.24, 1085–1092 (2000).
  • Davidowa H, Li Y, Plagemann A. Altered responses to orexigenic (AGRP, MCH) and anorexigenic (α-MSH, CART) neuropeptides of paraventricular hypothalamic neurons in early postnatally overfed rats. Eur. J. Neurosci.18, 613–621 (2003).
  • Fahrenkrog S, Harder T, Stolaczyk E et al. Cross-fostering to diabetic rat dams affects early development of mediobasal hypothalamic nuclei regulating food intake, body weight, and metabolism. J. Nutr.134, 648–654 (2004).
  • Denicola A, Batthyany C, Lissi E et al. Diffusion of nitric oxide into low density lipoprotein. J. Biol. Chem.277, 932–936 (2002).
  • Ji Y, Diao J, Han Y et al. Pyridoxine prevents dysfunction of endothelial cell nitric oxide production in response to low-density lipoprotein. Atherosclerosis188(1), 84–94 (2006).
  • Das UN. Nutritional factors in the pathobiology of human essential hypertension. Nutrition17, 337–346 (2001).
  • Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK. Angiotensin II stimulation of NAD(P)H oxidase activity. Circulation Res.91, 406–413 (2002).
  • Furuhashi M, Ura N, Higashiura K et al. Blockade of the rennin–angiotensin system increases adiponectin concentrations in patients with essential hypertension. Hypertension42, 76–81 (2003).
  • Zhang H, Zhang B, Tang BY, Chen YY, Zhu L, Shen YL. Angiotensin-converting enzyme inhibitors potentiate subthreshold preconditioning through NO and mitoK(ATP) channel. Sheng Li Xue Bao57, 453–460 (2005).
  • Cook S, Hugli O, Egli M et al. Clustering of cardiovascular risk factors mimicking the human metabolic syndrome X in eNOS null mice. Swiss Med. Wkly133, 360–363 (2003).
  • Bruning JC, Gautam D, Burks DJ et al. Role of brain insulin receptor in control of body weight and reproduction. Science289, 2122–2125 (2000).
  • Cardillo C, Nambi SS, Kilcoyne CM et al. Insulin stimulates both endothelin and nitric oxide activity in the human forearm. Circulation100, 820–825 (1999).
  • Das UN. Long-chain polyunsaturated fatty acids interact with nitric oxide, superoxide anion, and transforming growth factor-β to prevent human essential hypertension. Eur. J. Clin. Nutr.58, 195–203 (2004).
  • Li J, Zhang H, Wu F et al. Insulin inhibits tumor necrosis factor-α induction in myocardial ischemia/reperfusion: role of Akt and endothelial nitric oxide synthase phosphorylation. Crit. Care Med.36, 1551–1558 (2008).
  • Das UN. Possible beneficial action(s) of glucose-insulin-potassium regimen in acute myocardial infarction and inflammatory conditions: a hypothesis. Diabetologia43, 1081–1082 (2000).
  • Das UN. Insulin and the critically ill. Crit. Care6, 262–263 (2002).
  • Parsons TJ, Power C, Manor O. Fetal and early life growth and body mass index from birth to early adulthood in 1958 birth cohort: longitudinal study. BMJ323, 1331–1335 (2001).
  • Dorner G, Plagemann A. Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm. Metab. Res.26, 213–221 (1994).
  • Buchanan TA, Kjos SL. Gestational diabetes: risk or myth? J. Clin. Endocrinol. Metab.84, 1854–1857 (1999).
  • Singhal A, Wells J, Cole TJ, Fewtrell M, Lucas A. Programming lean body mass: a link between birth weight, obesity, and cardiovascular disease? Am. J. Clin. Nutr.77, 726–730 (2003).
  • Loos RJ, Beunen G, Fagard R, Derom C, Vlietinck R. Birth weight and body composition in young women: a prospective twin study. Am. J. Clin. Nutr.75, 676–682 (2002).
  • Das UN. Perinatal nutrition and obesity. Br. J. Nutr.99, 1391–1392 (2008).
  • McMillen IC, Adam CL, Muhlhausler BS. Early origins of obesity: programming the appetite regulatory system. J. Physiol.565, 9–17 (2005).
  • Grove KL, Smith MS. Ontogeny of the hypothalamic neuropeptide Y system. Physiol. Behav.79, 47–63 (2003).
  • Axen KV, Li X, Fung K, Sclafani A. The VMH-dietary obese rat: a new model of non-insulin-dependent diabetes mellitus. Am. J. Physiol.266(3 Pt 2), R921–R928 (1994).
  • Keno Y, Tokunaga K, Fujioka S et al. Marked reduction of pancreatic insulin content in male ventromedial hypothalamic-lesioned spontaneously non-insulin-dependent diabetic (Goto-Kakizaki) rats. Metabolism43, 32–37 (1994).
  • Dube MG, Kalra PS, Crowley WR, Kalra SP. Evidence of a physiological role for neuropeptide Y in ventromedial hypothalamic lesion-induced hyperphagia. Brain Res.690, 275–278 (1995).
  • Funahashi T, Shimomura I, Hiraoka H et al. Enhanced expression of rat obese (ob) gene in adipose tissues of ventromedial hypothalamus (VMH)-lesioned rats. Biochem. Biophys. Res. Commun.211, 469–475 (1995).
  • Williams G, Gill JS, Lee YC, Cordoso HM, Okpere BE, Bloom SR. Increased neuropeptide Y concentrations in specific hypothalamic regions of streptozotocin-induced diabetic rats. Diabetes38, 321–327 (1989).
  • Ohtani N, Ohta M, Sugano T. Microdialysis study of modification of hypothalamic neurotransmitters in streptozotocin-diabetic rats. J. Neurochem.69, 1622–1628 (1997).
  • Takahashi A, Ishimaru H, Ikarashi Y, Maruyama Y. Aspects of hypothalamic neuronal systems in VMH lesion-induced obese rats. J. Auton. Nerv. Syst.48, 213–219 (1994).
  • Barber M, Kasturi BS, Austin ME, Patel KP, Mohan Kumar SM, Mohan Kumar PS. Diabetes-induced neuroendocrine changes in rats: role of brain monoamines, insulin and leptin. Brain Res.964, 128–135 (2003).
  • Yoshida S, Yamashita S, Tokunaga K et al. Visceral fat accumulation and vascular complications associated with VMH lesioning of spontaneously non-insulin-dependent diabetic GK rat. Int. J. Obes. Relat. Metab. Disord.20, 909–916 (1996).
  • Das UN. Is metabolic syndrome X a disorder of the brain? Curr. Nutr. Food Sci.4, 73–108 (2008).
  • Wan Q, Xiong ZG, Man HY et al. Recruitment of functional GABAA receptors to postsynaptic domains by insulin. Nature388, 686–690 (1997).
  • Bruning JC, Gautam D, Burks DJ et al. Role of brain insulin receptor in control of body weight and reproduction. Science289, 2122–2125 (2000).
  • Hill JM, Lesniak MA, Pert CB, Roth J. Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience17, 1127–1138 (1986).
  • Menendez JA, Atrens DM. Insulin and the paraventricular hypothalamus: modulation of energy balance. Brain Res.555, 193–201 (1991).
  • McGowan MK, Andrews KM, Grossman SP. Chronic intrahypothalamic infusions of insulin or insulin antibodies alter body weight and food intake in the rat. Physiol. Behav.51, 753–766 (1992).
  • Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat. Neurosci.5, 566–572 (2002).
  • Sipols AJ, Baskin DG, Schwartz MW. Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes44, 147–151 (1995).
  • Benoit SC, Air EL, Coolen LM et al. The catabolic action of insulin in the brain is mediated by melanocortins. J. Neurosci.22, 9048–9052 (2002).
  • Schwartz MW. Central nervous system control of food intake. Nature404, 661–671 (2000).
  • Harvey J, Ashford ML. Leptin in the CNS: much more than a satiety signal. Neuropharmacology44, 845–854 (2003).
  • Mirshamsi S, Laidlaw HA, Ning K et al. Leptin and insulin stimulation of signalling pathways in arcuate nucleus neurones: PI3K dependent actin reorganization and KATP channel activation. BMC Neurosci.5, 54 (2004).
  • Ikeda H, West DB, Pustek JJ et al. Intraventricular insulin reduces food intake and body weight of lean but not obese Zucker rats. Appetite7, 381–386 (1986).
  • Schwartz MW, Marks J, Sipols AJ et al. Central insulin administration reduces neuropeptide Y mRNA expression in the arcuate nucleus of food-deprived lean (Fa/Fa) but not obese (fa/fa) Zucker rats. Endocrinology128, 2645–2647 (1991).
  • Das UN. Metabolic syndrome X is a low-grade systemic inflammatory condition with its origins in the perinatal period. Curr. Nutr. Food Sci.3, 277–295 (2007).
  • Sahu A, Dube MG, Phelps CP, Sninsky CA, Kalra PS, Kalra SP. Insulin and insulin-like growth factor II suppress neuropeptide Y release from the nerve terminals in the paraventricular nucleus: a putative hypothalamic site for energy homeostasis. Endocrinology136, 5718–5724 (1995).
  • Fisher BL, Schauer P. Medical and surgical options in the treatment of severe obesity. Am. J. Surg.184, 9S–16S (2002).
  • Pories WJ, Swanson MS, MacDonald KG et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann. Surg.222, 339–350 (1995).
  • Meguid MM, Ramos EJB, Suzuki S et al. A surgical model of human Roux-en-Y gastric bypass. J. Gastrointest. Surg.8, 621–630 (2004).
  • Xu Y, Ramos EJB, Middleton F et al. Gene expression profiles post Roux-en-Y gastric bypass. Surgery136, 246–252 (2004).
  • Romanova I, Ramos EJB, Xu Y et al. Neurobiologic changes in the hypothalamus associated with weight loss after gastric bypass. J. Am. Coll. Surg.199, 887–895 (2004).
  • Vendrell J, Broch M, Vilarrasa N et al. Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity. Obes. Res.12, 962–971 (2004).
  • Sookhai S, Wang JH, McCourt M, O’Connell D, Redmond HP. Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism. Surgery126, 314–322 (1999).
  • Sookhai S, Wang JH, Winter D, Power C, Kirwan W, Redmond HP. Dopamine attenuates the chemoattractant effect of interleukin-8: a novel role in the systemic inflammatory response syndrome. Shock14, 295–299 (2000).
  • Oberbeck R, Schmitz D, Wilsenack K et al. Dopamine affects cellular immune functions during polymicrobial sepsis. Intens. Care Med.32, 731–739 (2006).
  • Wang G-J, Volkow ND, Logan J et al. Brain dopamine and obesity. Lancet357, 354–357 (2001).
  • Bliznakov EG. Serotonin and its precursors as modulators of the immunological responsiveness in mice. J. Med.11, 81–105 (1980).
  • Mashek K, Devoino LV, Kadletsova O, Idova GV, Morozova NB. Changes in the level of serotonin in the brain and immunocompetent organs during the formation of the immune response. Fiziol Zh SSSR Im I M Sechenova71, 992–997 (1985).
  • Devoino L, Morozova N, Cheido M. Participation of serotoninergic system in neuroimmunomodulation: intraimmune mechanisms and the pathways providing an inhibitory effect. Int. J. Neurosci.40, 111–128 (1988).
  • Ciz M, Komrskova D, Pracharova L et al. Serotonin modulates the oxidative burst of human phagocytes via various mechanisms. Platelets18, 583–590 (2007).
  • Menard G, Turmel V, Bissonnette EY. Serotonin modulates the cytokine network in the lung: involvement of prostaglandin E2. Clin. Exp. Immunol.150, 340–348 (2007).
  • Muller T, Durk T, Blumental B et al. 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo. PLoS ONE4, E6453 (2009).
  • Kushnir-Sukhov NM, Gilfillan AM, Coleman JW et al. 5-hydroxytryptamine induces mast cell adhesion and migration. J. Immunol.177, 6422–6432 (2006).
  • Holler J, Zakrzewicz A, Kaufmann A et al. Neuropeptide Y is expressed by rat mononuclear blood leukocytes and strongly down-regulated during inflammation. J. Immunol.181, 6906–6912 (2008).
  • Dimitrijevic M, Stanojevic S, Mitic S et al. Neuropeptide Y (NPY) modulates oxidative burst and nitric oxide production in carrageenan-elicited granulocytes from rat air pouch. Peptides27, 3208–3215 (2006).
  • Dimitrijevic M, Stanojevic S, Mitic S et al. The anti-inflammatory effect of neuropeptide Y (NPY) in rats is dependent on dipeptidyl peptidase 4 (DP4) activity and age. Peptides29, 2179–2187 (2008).
  • Chandrasekharan B, Bala V, Kolachala VL et al. Targeted deletion of neuropeptide Y (NPY) modulates experimental colitis. PLoS ONE3, E3304 (2008).
  • Hernanz A, Tato E, De la Fuente M, de Miguel E, Arnalich F. Differential effects of gastrin-releasing peptide, neuropeptide Y, somatostatin and vasoactive intestinal peptide on interleukin-1 β, interleukin-6 and tumor necrosis factor-α production by whole blood cells from healthy young and old subjects. J. Neuroimmunol.71, 25–30 (1996).
  • King PJ, Widdowson PS, Doods H, Williams G. Effect of cytokines on hypothalamic neuropeptide Y release in vitro. Peptides21, 143–146 (2000).
  • Kos K, Harte AL, James S, Snead DR, O’Hare JP, McTernan PG, Kumar S. Secretion of neuropeptide Y in human adipose tissue and its role in maintenance of adipose tissue mass. Am. J. Physiol. Endocrinol. Metab.293, E1335–E1340 (2007).
  • Lopez M, Lage R, Saha AK et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab.7, 389–399 (2008).
  • Dixit VD, Schaffer EM, Pyle RS et al. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J. Clin. Invest.114, 57–66 (2004).
  • Wu R, Dong W, Qiang X et al. Orexigenic hormone ghrelin ameliorates gut barrier dysfunction in sepsis in rats. Crit. Care Med.37, 2421–2426 (2009).
  • Himmerch H, Sheldrick AJ. TNF-α and ghrelin: opposite effects on immune system, metabolism and mental health. Protein Pept. Lett.17(2), 186–196 (2010).
  • Wu R, Dong W, Cui X et al. Ghrelin down-regulates proinflammatory cytokines in sepsis through activation of the vagus nerve. Ann. Surg.245, 480–486 (2007).
  • Luger TA, Brzoska T. α-MSH related peptides: a new class of anti-inflammatory and immunomodulating drugs. Ann. Rheum. Dis.66(Suppl. 3), 52–55 (2007).
  • Taylor AW, Kitaichi N. The diminishment of experimental autoimmune encephalomyelitis (EAE) by neuropeptide α-melanocyte stimulating hormone (α-MSH) therapy. Brain Behav. Immun.22, 639–646 (2008).
  • Pavlov VA, Parrish WR, Rosas-Ballina M et al. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav. Immun.23, 41–45 (2009).
  • Das UN. Acetylcholinesterase and butyrylcholinesterase as possible markers of low-grade systemic inflammation. Med. Sci. Monit.13, RA214–RA221 (2007).
  • Van Maanen MA, Vervoordeldonk MJ, Tak PP. The cholinergic anti-inflammatory pathway: towards innovative treatment of rheumatoid arthritis. Nat. Rev. Rheumatol.5, 229–232 (2009).
  • Aso Y, Wakabayashi S, Nakano T, Yamamoto R, Takebayashi K, Inukai T. High serum high-sensitivity C-reactive protein concentrations are associated with relative cardiac sympathetic overactivity during the early morning period in Type 2 diabetic patients with metabolic syndrome. Metabolism55, 1014–1021 (2006).
  • Iwai T, Ito S, Tanimitsu K, Udagawa S, Oka J. Glucagon-like peptide-1 inhibits LPS-induced IL-1β production in cultured rat astrocytes. Neurosci. Res.55, 352–360 (2006).
  • Blandino-Osano M, Perez-Arana G, Mellado-Gil JM, Segundo C, Aguilar-Diosdado M. Anti-proliferative effect of pro-inflammatory cytokines in cultured β cells is associated with extracellular signal-regulated kinase 1/2 pathway inhibition: protective role of glucagon-like peptide-1. J. Mol. Endocrinol.41, 35–44 (2008).
  • Kim SJ, Nian C, Doudet DJ, McIntosh CH. Dipeptidyl peptidase IV inhibition with MK0431 improves islet graft survival in diabetic NOD mice partially via T-cell modulation. Diabetes58, 641–651 (2009).
  • Park MC, Chung SJ, Park YB, Lee SK. Pro-inflammatory effect of leptin on peripheral blood mononuclear cells of patients with ankylosing spondylitis. Joint Bone Spine76, 170–175 (2009).
  • Moraes JC, Coope A, Morari J et al. High-fat diet induces apoptosis of hypothalamic neurons. PLoS ONE4, E5045 (2009).
  • Posey KA, Clegg DJ, Printz RL et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab.296, E1003–E1012 (2009).
  • De Souza CT, Araujo EP, Bordin S et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology146, 4192–4199 (2005).
  • Luyer MD, Greve JW, Hadfoune M, Jacobs JA, Dejong CH, Buurman WA. Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J. Exp. Med.202, 1023–1029 (2005).
  • Dandona P, Mohanty P, Ghanim H et al. The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carbonylation. J. Clin. Endocrinol. Metab.86, 355–362 (2001).
  • Peters JH, Simasko SM, Ritter RG. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin. Physiol. Behav.89, 477–485 (2006).
  • Ueno N, Dube MG, Inui A, Kalra PS, Kalra SP. Leptin modulates orexigenic effects of ghrelin and attenuates adiponectin and insulin levels and selectively the dark-phase feeding as revealed by central leptin gene therapy. Endocrinology145, 4176–4184 (2004).
  • Goto M, Arima H, Watanabe M et al. Ghrelin increases neuropeptide Y and agouti-related peptide gene expression in the arcuate nucleus in rat hypothalamic organotypic cultures. Endocrinology147(11), 5102–5109 (2006).
  • Bassil AK, Dass NB, Sanger GJ. The prokinetic-like activity of ghrelin in rat isolated stomach is mediated via cholinergic and tachykininergic motor neurones. Eur. J. Pharmacol.544(1-3), 146–152 (2006).
  • Uno K, Katagiri H, Yamada T et al. Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivity. Science312, 1656–1659 (2006).
  • Borovikova LV, Ivanova S, Zhang M et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature405, 458–462 (2000).
  • Hersi AI, Kitaichi K, Srivastava LK, Gaudreau P, Quirion R. Dopamine D-5 receptor modulates hippocampal acetylcholine release. Brain Res. Mol. Brain Res.76, 336–340 (2000).
  • Anthony K, Reed LJ, Dunn JT et al. Attenuation of insulin-evoked responses in brain networks controlling appetite and reward in insulin resistance. The cerebral basis for impaired control of food intake in metabolic syndrome? Diabetes55, 2986–2992 (2006).
  • Flores MBS, Fernandes MFA, Ropello ER et al. Exercise improves insulin and leptin sensitivity in hypothalamus of Wistar rats. Diabetes55, 2554–2561 (2006).
  • Nishimura S, Manabe I, Nagasaki M et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med.15, 914–921 (2009).
  • Winer S, Chan Y, Paltser G et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med.15, 921–930 (2009).
  • Feurer M, Herrero L, Cipolletta D et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med.15, 930–940 (2009).
  • Lumeng CN, Maillard I, Saltiel AR. T-ing up inflammation in fat. Nat. Med.15, 846–847 (2009).
  • Das UN. Is metabolic syndrome X an inflammatory condition? Exp. Biol. Med.227, 989–997 (2002).
  • Das UN. Obesity, metabolic syndrome X, and inflammation. Nutrition18, 430–432 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.