79
Views
13
CrossRef citations to date
0
Altmetric
Review

Brx, a link between osmotic stress, inflammation and organ physiology/pathophysiology

, &
Pages 603-614 | Published online: 10 Jan 2014

References

  • Griffith RW. Composition of blood serum of deep-sea fishes. Biol. Bull.160, 250–264 (1981).
  • Burg MB, Kwon ED, Kultz D. Regulation of gene expression by hypertonicity. Annu. Rev. Physiol.59, 437–455 (1997).
  • Burg MB, Ferraris JD, Dmitrieva NI. Cellular response to hyperosmotic stresses. Physiol. Rev.87(4), 1441–1474 (2007).
  • Ho SN. Intracellular water homeostasis and the mammalian cellular osmotic stress response. J. Cell Physiol.206(1), 9–15 (2006).
  • Jungersted JM, Hellgren LI, Jemec GB, Agner T. Lipids and skin barrier function – a clinical perspective. Contact Dermatitis58(5), 255–262 (2008).
  • Bourque CW, Oliet SH. Osmoreceptors in the central nervous system. Annu. Rev. Physiol.59, 601–619 (1997).
  • Ho SN. The role of NFAT5/TonEBP in establishing an optimal intracellular environment. Arch. Biochem. Biophys.413(2), 151–157 (2003).
  • Kino T, Takatori H, Manoli I et al. Brx mediates the response of lymphocytes to osmotic stress through the activation of NFAT5. Sci. Signal.2(57), RA5 (2009).
  • Aramburu J, Lopez-Rodriguez C. Brx shines a light on the route from hyperosmolarity to NFAT5. Sci. Signal.2(65), PE20 (2009).
  • Aramburu J, Drews-Elger K, Estrada-Gelonch A et al. Regulation of the hypertonic stress response and other cellular functions by the Rel-like transcription factor NFAT5. Biochem. Pharmacol.72(11), 1597–1604 (2006).
  • Haussinger D. The role of cellular hydration in the regulation of cell function. Biochem. J.313, 697–710 (1996).
  • Lopez-Rodriguez C, Aramburu J, Jin L, Rakeman AS, Michino M, Rao A. Bridging the NFAT and NF-κB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress. Immunity15(1), 47–58 (2001).
  • Go WY, Liu X, Roti MA, Liu F, Ho SN. NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proc. Natl Acad. Sci. USA101(29), 10673–10678 (2004).
  • Trama J, Go WY, Ho SN. The osmoprotective function of the NFAT5 transcription factor in T cell development and activation. J. Immunol.169(10), 5477–5488 (2002).
  • Morancho B, Minguillon J, Molkentin JD, Lopez-Rodriguez C, Aramburu J. Analysis of the transcriptional activity of endogenous NFAT5 in primary cells using transgenic NFAT-luciferase reporter mice. BMC Mol. Biol.9, 13 (2008).
  • Lam AK, Ko BC, Tam S et al. Osmotic response element-binding protein (OREBP) is an essential regulator of the urine concentrating mechanism. J. Biol. Chem.279(46), 48048–48054 (2004).
  • O’Connor RS, Mills ST, Jones KA, Ho SN, Pavlath GK. A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis. J. Cell Sci.120(Pt 1), 149–159 (2007).
  • Lopez-Rodriguez C, Antos CL, Shelton JM et al. Loss of NFAT5 results in renal atrophy and lack of tonicity-responsive gene expression. Proc. Natl Acad. Sci. USA101(8), 2392–2397 (2004).
  • Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev.66(2), 300–372 (2002).
  • Saito H, Tatebayashi K. Regulation of the osmoregulatory HOG MAPK cascade in yeast. J. Biochem.136(3), 267–272 (2004).
  • Raitt DC, Posas F, Saito H. Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. EMBO J.19(17), 4623–4631 (2000).
  • Tatebayashi K, Tanaka K, Yang HY et al. Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway. EMBO J.26(15), 3521–3333 (2007).
  • Tatebayashi K, Yamamoto K, Tanaka K et al. Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. EMBO J.25(13), 3033–3044 (2006).
  • Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev.79(1), 143–180 (1999).
  • Saito H. Histidine phosphorylation and two-component signaling in eukaryotic cells. Chem. Rev.101(8), 2497–2509 (2001).
  • Maeda T, Takekawa M, Saito H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science269(5223), 554–558 (1995).
  • Lunn JA, Rozengurt E. Hyperosmotic stress induces rapid focal adhesion kinase phosphorylation at tyrosines 397 and 577. Role of Src family kinases and Rho family GTPases. J. Biol. Chem.279(43), 45266–45278 (2004).
  • Uhlik MT, Abell AN, Johnson NL et al. Rac –MEKK3–MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat. Cell Biol.5(12), 1104–1110 (2003).
  • Sheikh-Hamad D, Di Mari J, Suki WN, Safirstein R, Watts BA 3rd, Rouse D. p38 kinase activity is essential for osmotic induction of mRNAs for HSP70 and transporter for organic solute betaine in Madin-Darby canine kidney cells. J. Biol. Chem.273(3), 1832–1837 (1998).
  • Macian F, Lopez-Rodriguez C, Rao A. Partners in transcription: NFAT and AP-1. Oncogene20(19), 2476–2489 (2001).
  • Tsai TT, Guttapalli A, Agrawal A, Albert TJ, Shapiro IM, Risbud MV. MEK/ERK signaling controls osmoregulation of nucleus pulposus cells of the intervertebral disc by transactivation of TonEBP/OREBP. J. Bone Miner. Res.22(7), 965–974 (2007).
  • Lee JH, Kim M, Im YS, Choi W, Byeon SH, Lee HK. NFAT5 induction and its role in hyperosmolar stressed human limbal epithelial cells. Invest. Ophthalmol. Vis. Sci.49(5), 1827–1835 (2008).
  • Graef IA, Gastier JM, Francke U, Crabtree GR. Evolutionary relationships among Rel domains indicate functional diversification by recombination. Proc. Natl Acad. Sci. USA98(10), 5740–5745 (2001).
  • Keyser P, Borge-Renberg K, Hultmark D. The Drosophila NFAT homolog is involved in salt stress tolerance. Insect. Biochem. Mol. Biol.37(4), 356–362 (2007).
  • Dahl SC, Handler JS, Kwon HM. Hypertonicity-induced phosphorylation and nuclear localization of the transcription factor TonEBP. Am. J. Physiol. Cell Physiol.280(2), C248–C253 (2001).
  • Ko BC, Lam AK, Kapus A, Fan L, Chung SK, Chung SS. Fyn and p38 signaling are both required for maximal hypertonic activation of the osmotic response element-binding protein/tonicity-responsive enhancer-binding protein (OREBP/TonEBP). J. Biol. Chem.277(48), 46085–46092 (2002).
  • Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev.16(13), 1587–1609 (2002).
  • Cherfils J, Chardin P. GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem. Sci.24(8), 306–311 (1999).
  • Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol. Rev.81(1), 153–208 (2001).
  • Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu. Rev. Biochem.68, 459–486 (1999).
  • Olofsson B. Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell. Signal.11(8), 545–554 (1999).
  • Aznar S, Lacal JC. Rho signals to cell growth and apoptosis. Cancer Lett.165(1), 1–10 (2001).
  • Zheng Y, Olson MF, Hall A, Cerione RA, Toksoz D. Direct involvement of the small GTP-binding protein Rho in lbc oncogene function. J. Biol. Chem.270(16), 9031–9034 (1995).
  • Rubino D, Driggers P, Arbit D et al. Characterization of Brx, a novel Dbl family member that modulates estrogen receptor action. Oncogene16(19), 2513–2526 (1998).
  • Driggers PH, Segars JH, Rubino DM. The proto-oncoprotein Brx activates estrogen receptor b by a p38 mitogen-activated protein kinase pathway. J. Biol. Chem.276(50), 46792–476797 (2001).
  • Kino T, Souvatzoglou E, Charmandari E et al. Rho family Guanine nucleotide exchange factor Brx couples extracellular signals to the glucocorticoid signaling system. J. Biol. Chem.281(14), 9118–9126 (2006).
  • Sterpetti P, Hack AA, Bashar MP et al. Activation of the Lbc Rho exchange factor proto-oncogene by truncation of an extended C terminus that regulates transformation and targeting. Mol. Cell. Biol.19(2), 1334–1345 (1999).
  • Diviani D, Soderling J, Scott JD. AKAP-Lbc anchors protein kinase A and nucleates Gα12-selective Rho-mediated stress fiber formation. J. Biol. Chem.276(47), 44247–44257 (2001).
  • Diviani D, Abuin L, Cotecchia S, Pansier L. Anchoring of both PKA and 14-13-3 inhibits the Rho-GEF activity of the AKAP-Lbc signaling complex. EMBO J.23(14), 2811–2820 (2004).
  • Mayers CM, Wadell J, McLean K et al. The Rho guanine nucleotide exchange factor AKAP13 (BRX) is essential for cardiac development in mice. J. Biol. Chem.285(16), 12344–12354 (2010).
  • Rogers R, Norian J, Malik M et al. Mechanical homeostasis is altered in uterine leiomyoma. Am. J. Obstet. Gynecol.198(4), 474, E471–E411 (2008).
  • Morrison DK, Davis RJ. Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu. Rev. Cell Dev. Biol.19, 91–118 (2003).
  • Whitmarsh AJ. The JIP family of MAPK scaffold proteins. Biochem. Soc. Trans.34(Pt 5), 828–832 (2006).
  • Kelkar N, Standen CL, Davis RJ. Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways. Mol. Cell. Biol.25(7), 2733–2743 (2005).
  • Standen CL, Kennedy NJ, Flavell RA, Davis RJ. Signal transduction cross-talk mediated by JIP and IRS scaffold protein complexes. Mol. Cell. Biol.29(17), 4831–4840 (2009).
  • Ge W, Wu J, Zhai J et al. Binding of p190RhoGEF to a destabilizing element on the light neurofilament mRNA is competed by BC1 RNA. J. Biol. Chem.277(45), 42701–42705 (2002).
  • Buchsbaum RJ, Connolly BA, Feig LA. Interaction of Rac exchange factors Tiam1 and Ras–GRF1 with a scaffold for the p38 mitogen-activated protein kinase cascade. Mol. Cell. Biol.22(12), 4073–4085 (2002).
  • Shi Y, Gaestel M. In the cellular garden of forking paths: how p38 MAPKs signal for downstream assistance. Biol. Chem.383(10), 1519–1536 (2002).
  • Pedersen SF, Hoffmann EK, Mills JW. The cytoskeleton and cell volume regulation. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol.130(3), 385–399 (2001).
  • Henson JH. Relationships between the actin cytoskeleton and cell volume regulation. Microsc. Res. Tech.47(2), 155–162 (1999).
  • Hoffmann EK, Dunham PB. Membrane mechanisms and intracellular signalling in cell volume regulation. Int. Rev. Cytol.161, 173–262 (1995).
  • Di Ciano-Oliveira C, Thirone AC, Szaszi K, Kapus A. Osmotic stress and the cytoskeleton: the R(h)ole of Rho GTPases. Acta Physiol. (Oxf.)187(1–2), 257–272 (2006).
  • Li C, Xu Q. Mechanical stress-initiated signal transduction in vascular smooth muscle cells in vitro and in vivo . Cell. Signal.19(5), 881–891 (2007).
  • Wang JH, Thampatty BP, Lin JS, Im HJ. Mechanoregulation of gene expression in fibroblasts. Gene391(1–2), 1–15 (2007).
  • Drews-Elger K, Ortells MC, Rao A, Lopez-Rodriguez C, Aramburu J. The transcription factor NFAT5 is required for cyclin expression and cell cycle progression in cells exposed to hypertonic stress. PLoS ONE4(4), E5245 (2009).
  • Mahnke K, Ring S, Bedke T, Karakhanova S, Enk AH. Interaction of regulatory T cells with antigen-presenting cells in health and disease. Chem. Immunol. Allergy94, 29–39 (2008).
  • Li Y, Sassano A, Majchrzak B et al. Role of p38a MAP kinase in Type I interferon signaling. J. Biol. Chem.279(2), 970–979 (2004).
  • Schwartz L, Guais A, Pooya M, Abolhassan M. Is inflammation a consequence of extracellular hyperosmolarity? J. Inflamm. (Lond.)6, 21 (2009).
  • Hoffman WH, Helman SW, Passmore G. Acute activation of peripheral lymphocytes during treatment of diabetic ketoacidosis. J. Diabetes Complicat.15(3), 144–149 (2001).
  • Wu SG, Jeng FR, Wei SY et al. Red blood cell osmotic fragility in chronically hemodialyzed patients. Nephron78(1), 28–32 (1998).
  • Mitono H, Endoh H, Okazaki K et al. Acute hypoosmolality attenuates the suppression of cutaneous vasodilation with increased exercise intensity. J. Appl. Physiol.99(3), 902–908 (2005).
  • Ito T, Itoh T, Hayano T, Yamauchi K, Takamata A. Plasma hyperosmolality augments peripheral vascular response to baroreceptor unloading during heat stress. Am. J. Physiol. Regul. Integr. Comp. Physiol.289(2), R432–R440 (2005).
  • Holtfreter B, Bandt C, Kuhn SO et al. Serum osmolality and outcome in intensive care unit patients. Acta Anaesthesiol. Scand.50(8), 970–977 (2006).
  • Wong CK, Szeto CC, Chan MH, Leung CB, Li PK, Lam CW. Elevation of pro-inflammatory cytokines, C-reactive protein and cardiac troponin T in chronic renal failure patients on dialysis. Immunol. Invest.36(1), 47–57 (2007).
  • Yano A, Nakao K, Sarai A et al. Elevated serum interleukin-18 levels might reflect the high risk of hospitalization in patients on peritoneal dialysis. Nephrology (Carlton)10(6), 576–582 (2005).
  • Nakanishi I, Moutabarrik A, Okada N et al. Interleukin-8 in chronic renal failure and dialysis patients. Nephrol. Dial. Transplant.9(10), 1435–1442 (1994).
  • Descamps-Latscha B, Herbelin A, Nguyen AT et al. Balance between IL-1β, TNF-α, and their specific inhibitors in chronic renal failure and maintenance dialysis. Relationships with activation markers of T cells, B cells, and monocytes. J. Immunol.154(2), 882–892 (1995).
  • Ostrowski K, Schjerling P, Pedersen BK. Physical activity and plasma interleukin-6 in humans – effect of intensity of exercise. Eur. J. Appl. Physiol.83(6), 512–515 (2000).
  • Bird MD, Kovacs EJ. Organ-specific inflammation following acute ethanol and burn injury. J. Leukoc. Biol.84(3), 607–613 (2008).
  • Machnik A, Neuhofer W, Jantsch J et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat. Med.15(5), 545–552 (2009).
  • Shanfield S, Campbell P, Baumgarten M, Bloebaum R, Sarmiento A. Synovial fluid osmolality in osteoarthritis and rheumatoid arthritis. Clin. Orthop. Relat. Res. (235), 289–295 (1988).
  • Nemeth ZH, Deitch EA, Szabo C, Hasko G. Hyperosmotic stress induces nuclear factor-κB activation and interleukin-8 production in human intestinal epithelial cells. Am. J. Pathol.161(3), 987–996 (2002).
  • Vernia P, Gnaedinger A, Hauck W, Breuer RI. Organic anions and the diarrhea of inflammatory bowel disease. Dig. Dis. Sci.33(11), 1353–1358 (1988).
  • Foulks GN. The correlation between the tear film lipid layer and dry eye disease. Surv. Ophthalmol.52(4), 369–374 (2007).
  • Elenkov IJ, Iezzoni DG, Daly A, Harris AG, Chrousos GP. Cytokine dysregulation, inflammation and well-being. Neuroimmunomodulation12(5), 255–269 (2005).
  • Goldstein BI, Kemp DE, Soczynska JK, McIntyre RS. Inflammation and the phenomenology, pathophysiology, comorbidity, and treatment of bipolar disorder: a systematic review of the literature. J. Clin. Psychiatry70(8), 1078–1090 (2009).
  • Papa S, Bubici C, Zazzeroni F, Franzoso G. Mechanisms of liver disease: the crosstalk between the NF-κB and JNK pathways. Biol. Chem.390(10), 965–976 (2009).
  • Yu R, Kim CS, Kang JH. Inflammatory components of adipose tissue as target for treatment of metabolic syndrome. Forum Nutr.61, 95–103 (2009).
  • Fildes JE, Shaw SM, Yonan N, Williams SG. The immune system and chronic heart failure: is the heart in control? J. Am. Coll. Cardiol.53(12), 1013–1020 (2009).
  • Kim JH, Bachmann RA, Chen J. Interleukin-6 and insulin resistance. Vitam. Horm.80, 613–633 (2009).
  • Gorski J, Hou Q. Embryonic estrogen receptors: do they have a physiological function? Environ. Health Perspect.103(Suppl. 7), 69–72 (1995).
  • Li R, Whitworth K, Lai L et al. Concentration and composition of free amino acids and osmolalities of porcine oviductal and uterine fluid and their effects on development of porcine IVF embryos. Mol. Reprod. Dev.74(9), 1228–1235 (2007).
  • Kino T, De Martino MU, Charmandari E, Mirani M, Chrousos GP. Tissue glucocorticoid resistance/hypersensitivity syndromes. J. Steroid Biochem. Mol. Biol.85(2–5), 457–467 (2003).
  • Chrousos GP, Kino T. Intracellular glucocorticoid signaling: a formerly simple system turns stochastic. Sci. STKE2005(304), PE48 (2005).
  • Chrousos GP. The hypothalamic–pituitary–adrenal axis and immune-mediated inflammation. N. Engl J. Med.332(20), 1351–1362 (1995).
  • Antoni FA. Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Front. Neuroendocrinol.14(2), 76–122 (1993).
  • Weitzman RE, Kleeman CR. The clinical physiology of water metabolism. Part I: the physiologic regulation of arginine vasopressin secretion and thirst. West J. Med.131(5), 373–400 (1979).
  • Eddington DO, Baldwin EL, Segars JH, Wu TJ. Estrogen effects on the expression of Brx in the brain and pituitary of the mouse. Brain Res. Bull.69(4), 447–451 (2006).
  • Zhan Y, Gerondakis S, Coghill E et al. Glucocorticoid-induced TNF receptor expression by T cells is reciprocally regulated by NF-κB and NFAT. J. Immunol.181(8), 5405–5413 (2008).
  • Yildiz EH, Fan VC, Banday H et al. Evaluation of a new tear osmometer for repeatability and accuracy, using 0.5-microL (500-Nanoliter) samples. Cornea28(6), 677–680 (2009).
  • Gilbard JP, Farris RL, Santamaria J 2nd. Osmolarity of tear microvolumes in keratoconjunctivitis sicca. Arch. Ophthalmol.96(4), 677–681 (1978).
  • Bohr J, Jarnerot G, Tysk C, Jones I, Eriksson S. Effect of fasting on diarrhoea in collagenous colitis. Digestion65(1), 30–34 (2002).
  • Collins JL, Baltz JM. Estimates of mouse oviductal fluid tonicity based on osmotic responses of embryos. Biol. Reprod.60(5), 1188–1193 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.