38
Views
12
CrossRef citations to date
0
Altmetric
Review

Hypothyroxinemia: a subclinical condition affecting neurodevelopment

&
Pages 563-575 | Published online: 10 Jan 2014

References

  • Flamant F, Baxter JD, Forrest D et al. International Union of Pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol. Rev.58, 705–711 (2006).
  • Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr. Rev.31(2), 139–170 (2010).
  • Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr. Rev.23, 38–89 (2002).
  • Bianco AC, Kim BW. Deiodinases: implications of the local control of thyroid hormone action. J. Clin. Invest.116, 2571–2579 (2006).
  • St Germain DL, Galton VA, Hernandez A. Minireview: defining the roles of the iodothyronine deiodinases: current concepts and challenges. Endocrinology150, 1097–1107 (2009).
  • Guadaño-Ferraz A, Obregón MJ, St Germain DL, Bernal J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc. Natl Acad. Sci. USA94, 10391–10396 (1997).
  • Tu HM, Kim SW, Salvatore D et al. Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology138, 3359–3368 (1997).
  • Escámez MJ, Guadaño-Ferraz A, Cuadrado A, Bernal J. Type 3 iodothyronine deiodinase is selectively expressed in areas related to sexual differentiation in the newborn rat brain. Endocrinology140, 5443–5446 (1999).
  • Cahoy JD, Emery B, Kaushal A et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci.28, 264–278 (2008).
  • Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am. J. Hum. Genet.74, 168–175 (2004).
  • Friesema EC, Grueters A, Biebermann H et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet364, 1435–1437 (2004).
  • Schwartz CE, May MM, Carpenter NJ et al. Allan-Herndon-Dudley syndrome and the monocarboxylate transporter 8 (MCT8) gene. Am. J. Hum. Genet.77, 41–53 (2005).
  • Roberts LM, Woodford K, Zhou M et al. Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood–brain barrier. Endocrinology149, 6251–6261 (2008).
  • Ceballos A, Belinchon MM, Sanchez-Mendoza E et al. Importance of monocarboxylate transporter 8 for the blood–brain barrier-dependent availability of 3,5,3´-triiodo-L-thyronine. Endocrinology150, 2491–2496 (2009).
  • Galton VA, Wood ET, St Germain EA et al. Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development. Endocrinology148, 3080–3088 (2007).
  • Morte B, Ceballos A, Diez D et al. Thyroid hormone-regulated mouse cerebral cortex genes are differentially dependent on the source of the hormone: a study in monocarboxylate transporter-8- and deiodinase-2-deficient mice. Endocrinology151, 2381–2387 (2010).
  • Friesema EC, Jansen J, Milici C, Visser TJ. Thyroid hormone transporters. Vitam. Horm.70, 137–167 (2005).
  • Wirth EK, Roth S, Blechschmidt C et al. Neuronal 3´,3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan–Herndon–Dudley syndrome. J. Neurosci.29, 9439–9449 (2009).
  • Obregón MJ, Ruiz de Oña C, Calvo R, Escobar del Rey F, Morreale de Escobar G. Outer ring iodothyronine deiodinases and thyroid hormone economy: responses to iodine deficiency in the rat fetus and neonate. Endocrinology129, 2663–2673 (1991).
  • Schröder-van der Elst JP, van der Heide D, Morreale de Escobar G, Obregón MJ. Iodothyronine deiodinase activities in fetal rat tissues at several levels of iodine deficiency: a role for the skin in 3,5,3´-triiodothyronine economy? Endocrinology139, 2229–2234 (1998).
  • Peeters R, Fekete C, Goncalves C et al. Regional physiological adaptation of the central nervous system deiodinases to iodine deficiency. Am. J. Physiol. Endocrinol. Metab.281, E54–E61 (2001).
  • Morreale de Escobar G, Obregón MJ, Escobar del Rey F. Is neuropsychological development related to maternal hypothyroidism or to maternal hypothyroxinemia? J. Clin. Endocrinol.85, 3975–3987 (2000).
  • Morreale de Escobar G, Obregón MJ, Escobar del Rey F. Maternal thyroid hormones early in pregnancy and fetal brain development. Best Pract. Res. Clin. Endocrinol. Metab.18, 225–248 (2004).
  • Galton VA, Martínez E, Hernández A, St Germain EA, Bates JM, St Germain DL. Pregnant rat uterus expresses high levels of the type 3 iodothyronine deiodinase. J. Clin. Invest.103, 979–987 (1999).
  • Bernal J, Pekonen F. Ontogenesis of the nuclear 3,5,3´-triiodothyronine receptor in the human fetal brain. Endocrinology114, 677–679 (1984).
  • Kester MH, Martinez de Mena R, Obregón MJ et al. Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas. J. Clin. Endocrinol. Metab.89, 3117–3128 (2004).
  • Calvo R, Obregón MJ, Ruiz de Oña C, Escobar del Rey F, Morreale de Escobar G. Congenital hypothyroidism, as studied in rats. Crucial role of maternal thyroxine but not of 3,5,3´-triiodothyronine in the protection of the fetal brain. J. Clin. Invest.86, 889–899 (1990).
  • Morreale de Escobar GM, Ares S, Berbel P, Obregón MJ, Escobar del Rey F. The changing role of maternal thyroid hormone in fetal brain development. Semin. Perinatol.32, 380–386 (2008).
  • Glinoer D. The importance of iodine nutrition during pregnancy. Public Health Nutr.10, 1542–1546 (2007).
  • Huang SA, Dorfman DM, Genest DR, Salvatore D, Larsen PR. Type 3 iodothyronine deiodinase is highly expressed in the human uteroplacental unit and in fetal epithelium. J. Clin. Endocrinol. Metab.88, 1384–1388 (2003).
  • Andersson M, de Benoist B, Delange F, Zupan J. Prevention and control of iodine deficiency in pregnant and lactating women and in children less than 2-years-old: conclusions and recommendations of the Technical Consultation. Public Health Nutr.10, 1606–1611 (2007).
  • Zimmermann M, Delange F. Iodine supplementation of pregnant women in Europe: a review and recommendations. Eur. J. Clin. Nutr.58, 979–984 (2004).
  • Zimmermann MB, Jooste PL, Pandav CS. Iodine-deficiency disorders. Lancet372, 1251–1262 (2008).
  • Azizi F, Aminorroya A, Hedayati M, Rezvanian H, Amini M, Mirmiran P. Urinary iodine excretion in pregnant women residing in areas with adequate iodine intake. Public Health Nutr.6, 95–98 (2003).
  • Lazarus JH, Smyth PPA. Iodine deficiency in the UK and Ireland. Lancet372, 888 (2008).
  • Caldwell KL, Miller GA, Wang RY, Jain RB, Jones RL. Iodine status of the U.S. population, National Health and Nutrition Examination Survey 2003–2004. Thyroid18, 1207–1214 (2008).
  • Hollowell JG, Haddow JE. The prevalence of iodine deficiency in women of reproductive age in the United States of America. Public Health Nutr.10, 1532–1539 (2007).
  • Vila L, Legaz G, Barrionuevo C et al. Iodine status and thyroid volume changes during pregnancy: results of a survey in Aran Valley (Catalan Pyrenees). J. Endocrinol. Invest.31, 851–855 (2008).
  • Ruiz AM, Martínez EG, Rodríguez MA et al. Prevalence of iodine deficiency in pregnant women in the health area of Palencia (Spain). Endocrinol. Nutr.56, 452–457 (2009).
  • Becker DV, Braverman LE, Delange F et al. Public Health Committee of the American Thyroid Association. Iodine supplementation for pregnancy and lactation – United States and Canada: recommendations of the American Thyroid Association. Thyroid16, 949–951 (2006).
  • Vila L. Progress in eradication of iodine deficiency in Spain. Endocrinol. Nutr.57, 87–89 (2010).
  • Sánchez-Vega J, del Rey FE, Fariñas-Seijas H, de Escobar GM. Inadequate iodine nutrition of pregnant women from Extremadura (Spain). Eur. J. Endocrinol.159, 439–445 (2008).
  • Zimmermann MB. Iodine requirements in pregnancy and infancy. IDD Newsletter23, 1–2 (2007).
  • Velasco I, Carreira M, Santiago P et al. Effect of iodine prophylaxis during pregnancy on neurocognitive development of children during the first two years of life. J. Clin. Endocrinol. Metab.94, 3234–3241 (2009).
  • Pearce EN. What do we know about iodine supplementation in pregnancy? J. Clin. Endocrinol. Metab.94, 3188–3190 (2009).
  • Hetzel BS. Iodine deficiency and fetal brain damage. N. Engl. J. Med.331, 1770–1771 (1994).
  • Morreale de Escobar G, Obregón MJ, Escobar del Rey F. Iodine deficiency and brain development in the first half of pregnancy. Public Health Nutr.10, 1554–1570 (2007).
  • Haddow JE, Palomaki GE, Allan WC et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N. Engl. J. Med.341, 549–555 (1999).
  • de Zegher F, Pernasetti F, Vanhole C, Devlieger H, Van den Berghe G, Martial JA. The prenatal role of thyroid hormone evidenced by fetomaternal Pit-1 deficiency. J. Clin. Endocrinol. Metab.80, 3127–3130 (1995).
  • Blizzard RM, Chandler RW, Landing Pettit MD, West CD. Maternal autoimmunization to thyroid as probable cause of athyreotic cretinism. N. Engl. J. Med.263, 327–336 (1960).
  • Yasuda T, Ohnishi H, Wataki K, Minagawa M, Minamitami K, Niimi H. Outcome of a baby born from a mother with acquired juvenile hypothyroidism having undetectable thyroid hormone concentrations. J. Clin. Endocrinol. Metab.84, 2630–2632 (1999).
  • Delange F, Lecomte P. Iodine supplementation: benefits outweigh risks. Drug Safety22, 89–95 (2000).
  • Pop VJ, Brouwers EP, Vader HL, Vulsma T, van Baar AL, de Vijlder JJ. Maternal hypothyroxinemia during early pregnancy and subsequent child development, a 3-year follow-up study. Clin. Endocrinol. (Oxf.)59, 282–288 (2003).
  • Kooistra L, Crawford S, van Baar AL, Brouwers EP, Pop VJ. Neonatal effects of maternal hypothyroxinemia during early pregnancy. Pediatrics117, 161–167 (2006).
  • Kasatkina EP, Samsonova LN, Ivakhnenko VN et al. Gestational hypothyroxinemia and cognitive function in offspring. Neurosci. Behav. Physiol.36, 619–624 (2006).
  • Vermiglio F, Lo Presti VP, Moleti M et al. Attention deficit and hyperactivity disorders in the offspring of mothers exposed to mild–moderate iodine deficiency: a possible novel iodine deficiency disorder in developed countries. J. Clin. Endocrinol. Metab.89, 6054–6060 (2004).
  • Berbel P, Mestre JL, Santamaría A et al. Delayed neurobehavioral development in children born to pregnant women with mild hypothyroxinemia during the first month of gestation: the importance of early iodine supplementation. Thyroid19, 511–519 (2009).
  • Glinoer D, Delange F. The potential repercussions of maternal, fetal and neonatal hypothyroxinemia on the progeny. Thyroid10, 871–887 (2000).
  • Zoeller RT, Rovet J. Timing of thyroid hormone action in the developing brain: clinical observations and experimental findings. J. Neuroendocrinol.16, 809–818 (2004).
  • Fisher DA. Thyroid function in premature infants. The hypothyroxinemia of prematurity. Clin. Perinatol.25, 999–1014 (1998).
  • Reuss ML, Paneth N, Pinto-Martin JA, Lorenz JM, Susser M. The relation of transient hypothyroxinemia in preterm infants to neurologic development at two years of age. N. Engl. J. Med.334, 821–827 (1996).
  • Ares S, Escobar-Morreale HF, Quero J et al. Neonatal hypothyroxinemia: effects of iodine intake and premature birth. J. Clin. Endocrinol. Metab.82, 1704–1712 (1997).
  • Williams FL, Mires GJ, Barnett C et al. Transient hypothyroxinemia in preterm infants: the role of cord sera thyroid hormone levels adjusted for prenatal and intrapartum factors. J. Clin. Endocrinol. Metab.90, 4599–4606 (2005).
  • Morreale de Escobar G, Ares S. The hypothyroxinemia of prematurity. J. Clin. Endocrinol. Metab.82, 1701–1703 (1997).
  • van Wassenaer AG, Kok JH. Hypothyroxinaemia and thyroid function after preterm birth. Semin. Neonatol.9, 3–11 (2004).
  • Biswas S, Buffery J, Enoch H, Bland JM, Walters D, Markiewicz M. A longitudinal assessment of thyroid hormone concentrations in preterm infants younger than 30 weeks’ gestation during the first 2 weeks of life and their relationship to outcome. Pediatrics109, 222–227 (2002).
  • Williams FL, Hume R. Perinatal factors affecting thyroid hormone status in extreme preterm infants. Semin. Perinatol.32, 398–402 (2008).
  • Rovet J, Simic N. The role of transient hypothyroxinemia of prematurity in development of visual abilities. Semin. Perinatol.32, 431–437 (2008).
  • den Ouden AL, Kok JH, Verkerk PH, Brand R, Verloove-Vanhorick SP. The relation between neonatal thyroxine levels and neurodevelopmental outcome at age 5 and 9 years in a national cohort of very preterm and/or very low birth weight premature infants. Pediatr. Res.39, 142–145 (1996).
  • Atkinson J, Braddick O. Visual and visuocognitive development in children born very prematurely. Prog. Brain Res.164, 123–149 (2007).
  • Simic N, Asztalos EV, Rovet J. Impact of neonatal thyroid hormone insufficiency and medical morbidity on infant neurodevelopment and attention following preterm birth. Thyroid19, 395–401 (2009).
  • O’Callaghan MJ, Burns Y, Gray P et al. Extremely low birth weight and control infants at 2 years corrected age: a comparison of intellectual abilities, motor performance, growth and health. Early Hum. Dev.40, 115–128 (1995).
  • Samara M, Marlow N, Wolke D; EPICure Study Group. Pervasive behavior problems at 6 years of age in a total-population sample of children born at </= 25 weeks of gestation. Pediatrics122, 562–573 (2008).
  • Jones PB, Rantakallio P, Hartikainen AL, Isohanni M, Sipila P. Schizophrenia as a long-term outcome of pregnancy, delivery, and perinatal complications: a 28-year follow-up of the 19 estrogen north Finland general population birth cohort. Am. J. Psychiatry155, 355–364 (1998).
  • Smith GN, Flynn SW, McCarthy N et al. Low birth weight in schizophrenia: prematurity or poor fetal growth? Schizophr. Res.47, 177–184 (2001).
  • van Wassenaer AG, Briët JM, van Baar A et al. Free thyroxine levels during the first weeks of life and neurodevelopmental outcome until the age of 5 years in very preterm infants. Pediatrics110, 534–539 (2002).
  • La Gamma EF, van Wassenaer AG, Ares S et al. Phase 1 trial of 4 thyroid hormone regimens for transient hypothyroxinemia in neonates of <28 weeks. Pediatrics124, E258–E268 (2009).
  • Morte B, Díez D, Ausó E et al. Thyroid hormone regulation of gene expression in the developing rat fetal cerebral cortex: prominent role of the Ca2+/calmodulin-dependent protein kinase IV pathway. Endocrinology151, 810–820 (2010).
  • Bernal J. Thyroid hormones and brain development. Vitam. Horm.71, 95–122 (2005).
  • Berbel P, Obregón MJ, Bernal J, Escobar del Rey F, Morreale de Escobar G. Iodine supplementation during pregnancy: a public health challenge. Trends Endocrinol. Metab.18, 338–343 (2007).
  • O’Rourke NA, Dailey ME, Smith SJ, McConnell SK. Diverse migratory pathways in the developing cerebral cortex. Science258, 299–302 (1992).
  • Bayer SA, Altman J. Neocortical Development. Raven Press NY, USA 255 (1991).
  • Obregón MJ, Mallol J, Pastor R, Morreale de Escobar G, Escobar del Rey F. L-thyroxine and 3,5,3´-triiodo-L-thyronine in rat embryos before onset of fetal thyroid function. Endocrinology114, 305–307 (1984).
  • Marín-Padilla M. Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat. Embryol.152, 109–126 (1978).
  • Kratzsch J, Pulzer F. Thyroid gland development and defects. Best Pract. Res. Clin. Endocrinol. Metab.22, 57–75 (2008).
  • Biebermann H, Grüters A, Schöneberg T, Gudermann T. Congenital hypothyroidism caused by mutations in the thyrotropin-receptor gene. N. Engl. J. Med.336, 1390–1391 (1997).
  • Pasca di Magliano M, Di Lauro R, Zannini M. Pax8 has a key role in thyroid cell differentiation. Proc. Natl Acad. Sci. USA97, 13144–13149 (2000).
  • Flamant F, Samarut J. Thyroid hormone receptors: lessons from knockout and knock-in mutant mice. Trends Endocrinol. Metab.14, 85–90 (2003).
  • Park SM, Chatterjee VKK. Genetics of congenital hypothyroidism. J. Med. Genet.42, 379–389 (2005).
  • Morte B, Manzano J, Scanlan T, Vennström B, Bernal J. Deletion of the thyroid hormone receptor a 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc. Natl Acad. Sci. USA99, 3985–3989 (2002).
  • Flamant F, Gauthier K, Samarut J. Thyroid hormones signaling is getting more complex: STORMs are coming. Mol. Endocrinol.21, 321–333 (2007).
  • Wallis K, Sjogren M, van Hogerlinden M et al. Locomotor deficiencies and aberrant development of subtype-specific GABAergic interneurons caused by an unliganded thyroid hormone receptor a1. J. Neurosci.28, 1904–1915 (2008).
  • Dumitrescu AM, Liao XH, Weiss RE, Millen K, Refetoff S. Tissue-specific thyroid hormone deprivation and excess in monocarboxylate transporter (mct) 8-deficient mice. Endocrinology147, 4036–4043 (2006).
  • Trajkovic M, Visser TJ, Mittag J et al. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J. Clin. Invest.117, 627–635 (2007).
  • Galton VA, Wood ET, St Germain EA et al. Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development. Endocrinology148, 3080–3088 (2007).
  • DeGroot LJ, Davis AM. Studies on the biosynthesis of iodotyrosines: a soluble thyroidal iodide-peroxidase tyrosine-iodinase system. Endocrinology70, 492–504 (1962).
  • Escobar del Rey F, Morreale de Escobar G. The effect of propylthiouracil, methylthiouracil and thiouracil on the peripheral metabolism of 1-thyroxine in thyroidectomized, 1-thyroxine maintained rats. Endocrinology69, 456–465 (1961).
  • Oppenheimer JH, Schwartz HL, Surks MI. Propylthiouracil inhibits the conversion of L-thyroxine to L-triiodothyronine. An explanation of the antithyroxine effect of propylthiouracil and evidence supporting the concept that triiodothyronine is the active thyroid hormone. J. Clin. Invest.51, 2493–2497 (1972).
  • Berbel P, Navarro D, Ausó E et al. Role of late maternal thyroid hormones in cerebral cortex development: an experimental model for human prematurity. Cereb. Cortex20(6), 1462–1475 (2009).
  • Mano MT, Potter BJ, Belling GB, Chevadej J, Hetzel BS. Fetal brain in response to iodine deficiency in a primate model Callithrix Jacchus Jacchus. J. Neurol. Sci.79, 287–300 (1987).
  • Potter BJ, Mano MT, Belling GB et al. Retarded fetal brain development resulting from severe dietary iodine deficiency in sheep. Neuropathol. Appl. Neurobiol.8, 303–313 (1982).
  • Li JQ, Wang X, Yan Y et al. The effects of severely iodine deficient diet derived from an endemic area on fetal brain development in the rat. Observations in the first generation. Neuropathol. Appl. Neurobiol.12, 261–270 (1986).
  • Martínez-Galán JR, Pedraza P, Santacana M, Escobar del Ray F, Morreale de Escobar G, Ruiz-Marcos A. Early effects of iodine deficiency on radial glial cells of the hippocampus ofthe rat fetus. A model of neurological cretinism. J. Clin. Invest.99, 2701–2709 (1997).
  • Lavado-Autric R, Ausó E, García-Velasco JV et al. Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J. Clin. Invest.111, 1073–1082 (2003).
  • Ausó E, Lavado-Autric R, Cuevas E, Escobar del Rey F, Morreale de Escobar G, Berbel P. A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration. Endocrinology145, 4037–4047 (2004).
  • Cuevas E, Ausó E, Telefont M, Morreale de Escobar G, Sotelo C, Berbel P. Transient maternal hypothyroxinemia at onset of corticogenesis alters tangential migration of MGE-derived neurons. Eur. J. Neurosci.22, 541–551 (2005).
  • Elovitz MA, Mrinalini C. Animal models of preterm birth. Trends Endocrinol. Metab.15, 479–487 (2004).
  • DeLuca PP, Dani BA. Skeletal effects of parathyroid hormone (1–34) in ovariectomized rats with or without concurrent administration of salmon calcitonin. AAPS Pharm. Sci.3, 1–7 (2001).
  • Lucio RA, García JV, Cerezo JR, Pacheco P, Innocenti GM, Berbel P. The development of auditory callosal connections in normal and hypothyroid rats. Cereb. Cortex7, 303–316 (1997).
  • Berbel P, Ausó E, García-Velasco JV, Molina ML, Camacho M. Role of thyroid hormones in the maturation and organisation of rat barrel cortex. Neuroscience107, 383–394 (2001).
  • Goodman JH, Gilbert ME. Modest thyroid hormone insufficiency during development induces a cellular malformation in the corpus callosum: a model of cortical dysplasia. Endocrinology148, 2593–2597 (2007).
  • Berbel P, Marco P, Cerezo JR, DeFelipe J. Distribution of parvalbumin immunoreactivity in the neocortex of hypothyroid adult rats. Neurosci. Lett.204, 65–68 (1996).
  • van Middlesworth L, Norris CH. Audiogenic seizures and cochlear damage in rats after perinatal antithyroid treatment. Endocrinology106, 1686–1690 (1980).
  • Opazo MC, Gianini A, Pancetti F et al. Maternal hypothyroxinemia impairs spatial learning and synaptic nature and function in the offspring. Endocrinology149, 5097–5106 (2008).
  • Liu JL, Zhuang ZJ, Tan YB et al. Morphologic study on cerebral cortex development in therapeutically aborted fetuses in an endemic goiter region in Guizhou. Chin. Med. J.97, 67–72 (1984).
  • Costeira MJ, Oliveira P, Ares S, de Escobar GM, Palha JA. Iodine status of pregnant women and their progeny in the Minho region of Portugal. Thyroid19, 157–163 (2009).
  • Delange F. Risks and benefits of iodine supplementation. Lancet351, 923–924 (1998).
  • Gallego G, Goodall S, Eastman CJ. Iodine deficiency in Australia: is iodine supplementation for pregnant and lactating women warranted? Med. J. Aust.192, 461–463 (2010).
  • Glinoer D, De Nayer P, Delange F et al. A randomized trial for the treatment of mild iodine deficiency during pregnancy: maternal and neonatal effects. J. Clin. Endocrinol. Metab.80, 258–269 (1995).
  • Moleti M, Lo Presti VP, Campolo MC, Mattina F et al. Iodine prophylaxis using iodized salt and risk of maternal thyroid failure in conditions of mild iodine deficiency. J. Clin. Endocrinol. Metab.93, 2616–2621 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.