48
Views
10
CrossRef citations to date
0
Altmetric
Review

Role of the aryl hydrocarbon receptor-interacting protein in familial isolated pituitary adenoma

, , &
Pages 681-695 | Published online: 10 Jan 2014

References

  • Heaney AP, Melmed S. Molecular targets in pituitary tumours. Nat. Rev. Cancer4, 285–295 (2004).
  • Frohman LA, Eguchi K. Familial acromegaly. Growth Horm. IGF Res.14(Suppl. A), S90–S96 (2004).
  • Ezzat S, Asa SL, Couldwell WT et al. The prevalence of pituitary adenomas: a systematic review. Cancer101, 613–619 (2004).
  • Daly AF, Rixhon M, Adam C, Dempegioti A, Tichomirowa MA, Beckers A. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J. Clin. Endocrinol. Metab.91, 4769–4775 (2006).
  • Fernandez A, Karavitaki N, Wass JA. Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin. Endocrinol. (Oxf).72(3), 377–382 (2010).
  • Arafah BM, Nasrallah MP. Pituitary tumors: pathophysiology, clinical manifestations and management. Endocr. Relat. Cancer8, 287–305 (2001).
  • Melmed S. Mechanisms for pituitary tumorigenesis: the plastic pituitary. J. Clin. Invest.112, 1603–1618 (2003).
  • Beckers A, Daly AF. The clinical, pathological, and genetic features of familial isolated pituitary adenomas. Eur. J. Endocrinol.157, 371–382 (2007).
  • Bertherat J. Carney complex (CNC). Orphanet. J. Rare Dis.1, 21–26 (2006).
  • Chandrasekharappa SC, Guru SC, Manickam P et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science276, 404–407 (1997).
  • Verges B, Boureille F, Goudet P et al. Pituitary disease in MEN type 1 (MEN1): data from the France-Belgium MEN1 multicenter study. J. Clin. Endocrinol. Metab.87, 457–465 (2002).
  • Thakker RV, Bouloux P, Wooding C et al. Association of parathyroid tumors in multiple endocrine neoplasia type 1 with loss of alleles on chromosome 11. N. Engl. J. Med.321, 218–224 (1989).
  • Turner JJ, Christie PT, Pearce SH, Turnpenny PD, Thakker RV. Diagnostic challenges due to phenocopies: lessons from Multiple Endocrine Neoplasia type 1 (MEN1). Hum. Mutat.31, E1089–E1101 (2010).
  • Pellegata NS, Quintanilla-Martinez L, Siggelkow H et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc. Natl Acad. Sci. USA103, 15558–15563 (2006).
  • Daly AF, Tichomirowa MA, Beckers A. Genetic, molecular and clinical features of familial isolated pituitary adenomas. Horm. Res.71(Suppl. 2), 116–122 (2009).
  • Agarwal SK, Mateo CM, Marx SJ. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J. Clin. Endocrinol. Metab.94, 1826–1834 (2009).
  • Georgitsi M, Raitila A, Karhu A et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J. Clin. Endocrinol. Metab.92, 3321–3325 (2007).
  • Boikos SA, Stratakis CA. Carney complex: the first 20 years. Curr. Opin Oncol.19, 24–29 (2007).
  • Casey M, Mah C, Merliss AD et al. Identification of a novel genetic locus for familial cardiac myxomas and Carney complex. Circulation98, 2560–2566 (1998).
  • Daly AF, Jaffrain-Rea ML, Ciccarelli A et al. Clinical characterization of familial isolated pituitary adenomas. J. Clin. Endocrinol. Metab.91, 3316–3323 (2006).
  • Daly AF, Jaffrain-Rea ML, Beckers A. Clinical and genetic features of familial pituitary adenomas. Horm. Metab. Res.37, 347–354 (2005).
  • Benlian P, Giraud S, Lahlou N et al. Familial acromegaly: a specific clinical entity – further evidence from the genetic study of a three-generation family. Eur. J. Endocrinol.133, 451–456 (1995).
  • Tanaka C, Yoshimoto K, Yamada S et al. Absence of germ-line mutations of the multiple endocrine neoplasia type 1 (MEN1) gene in familial pituitary adenoma in contrast to MEN1 in Japanese. J. Clin. Endocrinol. Metab.83, 960–965 (1998).
  • Gadelha MR, Prezant TR, Une KN et al. Loss of heterozygosity on chromosome 11q13 in two families with acromegaly/gigantism is independent of mutations of the multiple endocrine neoplasia type I gene. J. Clin. Endocrinol. Metab.84, 249–256 (1999).
  • Ackermann F, Krohn K, Windgassen M, Buchfelder M, Fahlbusch R, Paschke R. Acromegaly in a family without a mutation in the menin gene. Exp. Clin. Endocrinol. Diabetes107, 93–96 (1999).
  • Soares BS, Eguchi K, Frohman LA. Tumor deletion mapping on chromosome 11q13 in eight families with isolated familial somatotropinoma and in 15 sporadic somatotropinomas. J. Clin. Endocrinol. Metab.90, 6580–6587 (2005).
  • Yamada S, Yoshimoto K, Sano T et al. Inactivation of the tumor suppressor gene on 11q13 in brothers with familial acrogigantism without multiple endocrine neoplasia type 1. J. Clin. Endocrinol. Metab.82, 239–242 (1997).
  • Vierimaa O, Georgitsi M, Lehtonen R et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science312, 1228–1230 (2006).
  • Chahal HS, Chapple JP, Frohman LA, Grossman AB, Korbonits M. Clinical, genetic and molecular characterisation of patients with familial isolated pituitary adenomas. Trends Endocrinol. Metab.21(7), 419–427 (2010).
  • Yu R, Bonert V, Saporta I, Raffel LJ, Melmed S. Aryl hydrocarbon receptor interacting protein variants in sporadic pituitary adenomas. J. Clin. Endocrinol. Metab.91, 5126–5129 (2006).
  • Barlier A, Vanbellinghen JF, Daly AF et al. Mutations in the aryl hydrocarbon receptor interacting protein gene are not highly prevalent among subjects with sporadic pituitary adenomas. J. Clin. Endocrinol. Metab.92, 1952–1955 (2007).
  • Daly AF, Vanbellinghen JF, Khoo SK et al. Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J. Clin. Endocrinol. Metab.92, 1891–1896 (2007).
  • Leontiou CA, Gueorguiev M, van der Spuy J et al. The role of the aryl hydrocarbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. J. Clin. Endocrinol. Metab.93, 2390–2401 (2008).
  • McCarthy MI, Noonan K, Wass JA, Monson JP. Familial acromegaly: studies in three families. Clin. Endocrinol. (Oxf).32, 719–728 (1990).
  • Iwata T, Yamada S, Mizusawa N, Golam HM, Sano T, Yoshimoto K. The aryl hydrocarbon receptor-interacting protein gene is rarely mutated in sporadic GH-secreting adenomas. Clin. Endocrinol. (Oxf).66, 499–502 (2007).
  • Georgitsi M, Raitila A, Karhu A et al. Molecular diagnosis of pituitary adenoma predisposition caused by aryl hydrocarbon receptor-interacting protein gene mutations. Proc. Natl Acad. Sci. USA104, 4101–4105 (2007).
  • Georgitsi M, Heliovaara E, Paschke R et al. Large genomic deletions in AIP in pituitary adenoma predisposition. J. Clin. Endocrinol. Metab.93, 4146–4151 (2008).
  • Cazabat L, Libe R, Perlemoine K et al. Germline inactivating mutations of the aryl hydrocarbon receptor-interacting protein gene in a large cohort of sporadic acromegaly: mutations are found in a subset of young patients with macroadenomas. Eur. J. Endocrinol.157, 1–8 (2007).
  • Naves LA, Daly AF, Vanbellinghen JF et al. Variable pathological and clinical features of a large Brazilian family harboring a mutation in the aryl hydrocarbon receptor-interacting protein gene. Eur. J. Endocrinol.157, 383–391 (2007).
  • Chahal HS, Igreja SC, Gueorguiev M et al. The clinical and genetic characteristics of patients with familial isolated pituitary adenomas. Hormones, 11th International Workshop of MEN meeting, Delphi.7(Suppl. 2), O8 (2008).
  • Stratakis CA, Tichomirowa MA, Boikos S et al. The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin. Genet. DOI: 10.1111/j.1399-0004.2010. 01406.x (2010) (Epub ahead of print).
  • Matsuno A, Teramoto A, Yamada S et al. Gigantism in sibling unrelated to multiple endocrine neoplasia: case report. Neurosurgery35, 952–955 (1994).
  • Jorge BH, Agarwal SK, Lando VS et al. Study of the multiple endocrine neoplasia type 1, growth hormone-releasing hormone receptor, Gs α, and Gi2 α genes in isolated familial acromegaly. J. Clin. Endocrinol. Metab.86, 542–544 (2001).
  • Toledo RA, Lourenco DM Jr, Liberman B et al. Germline mutation in the aryl hydrocarbon receptor interacting protein gene in familial somatotropinoma. J. Clin. Endocrinol. Metab.92, 1934–1937 (2007).
  • Georgitsi M, De ME, Cannavo S et al. Aryl hydrocarbon receptor interacting protein (AIP) gene mutation analysis in children and adolescents with sporadic pituitary adenomas. Clin. Endocrinol. (Oxf).69, 621–627 (2008).
  • Raitila A, Georgitsi M, Karhu A et al. No evidence of somatic aryl hydrocarbon receptor interacting protein mutations in sporadic endocrine neoplasia. Endocr. Relat. Cancer14, 901–906 (2007).
  • Montanana CF, Daly AF, Riego-Suarez R et al. AIP mutations in familial and sporadic pituitary adenomas: local experience and review of the literature. Endocrinol. Nutr.56 (7), 369–377 (2009).
  • Yaneva M, Daly AF, Tichomirowa MA et al. Aryl hydrocarbon receptor interacting protein gene mutations in bulgarian FIPA and young sporadic pituitary adenoma patients. Proceedings of the 90th Annual Meet of the Endocrine Society. (2008) (Abstract P3-520).
  • Luccio-Camelo DC, Une KN, Ferreira RE et al. A meiotic recombination in a new isolated familial somatotropinoma kindred. Eur. J. Endocrinol.150, 643–648 (2004).
  • Toledo RA, Mendonca BB, Longuini VC et al. Familial somatotropinoma and adrenocortical carcinoma due to a novel germline mutation and loss of the wild-type allele of the AIP gene. Proceedings of the 90th Annual Meet of the Endocrine Society. (2008) (Abstract P1-488).
  • Igreja SC, Chahal HS, King P et al. Characterization of aryl hydrocarbon receptor interacting protein (AIP) mutations in familial isolated pituitary adenoma families. Hum. Mutat.31(8), 950–960 (2010).
  • Jennings JE, Georgitsi M, Holdaway I et al. Aggressive pituitary adenomas occurring in young patients in a large Polynesian kindred with a germline R271W mutation in the AIP gene. Eur. J. Endocrinol.161, 799–804 (2009).
  • Kikuchi M, Ohkura N, Yamaguchi K, Obara T, Tsukada T. Gene dose mapping delineated boundaries of a large germline deletion responsible for multiple endocrine neoplasia type 1. Cancer Lett.208, 81–88 (2004).
  • Buchbinder S, Bierhaus A, Zorn M, Nawroth PP, Humpert P, Schilling T. Aryl hydrocarbon receptor interacting protein gene (AIP) mutations are rare in patients with hormone secreting or non-secreting pituitary adenomas. Exp. Clin. Endocrinol. Diabetes116, 625–628 (2008).
  • Soares BS, Frohman LA. Isolated familial somatotropinoma. Pituitary7, 95–101 (2004).
  • Lin BC, Sullivan R, Lee Y, Moran S, Glover E, Bradfield CA. Deletion of the aryl hydrocarbon receptor-associated protein 9 leads to cardiac malformation and embryonic lethality. J. Bio. Chem.282, 35924–35932 (2007).
  • Carver LA, Bradfield CA. Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo. J. Bio. Chem.272, 11452–11456 (1997).
  • Kuzhandaivelu N, Cong YS, Inouye C, Yang WM, Seto E. XAP2, a novel hepatitis B virus X-associated protein that inhibits X transactivation. Nucleic Acids Res.24, 4741–4750 (1996).
  • Petrulis JR, Perdew GH. The role of chaperone proteins in the aryl hydrocarbon receptor core complex. Chem. Biol. Interact.141, 25–40 (2002).
  • Nakata A, Urano D, Fujii-Kuriyama Y, Mizuno N, Tago K, Itoh H. G-protein signalling negatively regulates the stability of aryl hydrocarbon receptor. EMBO Rep.10, 622–628 (2009).
  • Carver LA, LaPres JJ, Jain S, Dunham EE, Bradfield CA. Characterization of the Ah receptor-associated protein, ARA9. J. Bio. Chem.273, 33580–33587 (1998).
  • Pollenz RS, Dougherty EJ. Redefining the role of the endogenous XAP2 and C-terminal hsp70-interacting protein on the endogenous Ah receptors expressed in mouse and rat cell lines. J. Bio. Chem.280, 33346–33356 (2005).
  • Kazlauskas A, Poellinger L, Pongratz I. The immunophilin-like protein XAP2 regulates ubiquitination and subcellular localization of the dioxin receptor. J. Bio. Chem.275, 41317–41324 (2000).
  • LaPres JJ, Glover E, Dunham EE, Bunger MK, Bradfield CA. ARA9 modifies agonist signaling through an increase in cytosolic aryl hydrocarbon receptor. J. Bio. Chem.275, 6153–6159 (2000).
  • Bell DR, Poland A. Binding of aryl hydrocarbon receptor (AhR) to AhR-interacting protein. The role of hsp90. J. Bio. Chem.275, 36407–36414 (2000).
  • Meyer BK, Petrulis JR, Perdew GH. Aryl hydrocarbon (Ah) receptor levels are selectively modulated by hsp90-associated immunophilin homolog XAP2. Cell Stress Chaperones5, 243–254 (2000).
  • Meyer BK, Perdew GH. Characterization of the AhR-hsp90-XAP2 core complex and the role of the immunophilin-related protein XAP2 in AhR stabilization. Biochemistry38, 8907–8917 (1999).
  • Sumanasekera WK, Tien ES, Turpey R, Vanden Heuvel JP, Perdew GH. Evidence that peroxisome proliferator-activated receptor alpha is complexed with the 90-kDa heat shock protein and the hepatitis virus B X-associated protein 2. J. Bio. Chem.278, 4467–4473 (2003).
  • Laenger A, Lang-Rollin I, Kozany C et al. XAP2 inhibits glucocorticoid receptor activity in mammalian cells. FEBS Lett.583, 1493–1498 (2009).
  • Yano M, Terada K, Mori M. AIP is a mitochondrial import mediator that binds to both import receptor Tom20 and preproteins. J. Cell. Biol.163, 45–56 (2003).
  • Froidevaux MS, Berg P, Seugnet I et al. The co-chaperone XAP2 is required for activation of hypothalamic thyrotropin-releasing hormone transcription in vivo. EMBO Rep.7, 1035–1039 (2006).
  • Kang BH, Altieri DC. Regulation of survivin stability by the aryl hydrocarbon receptor-interacting protein. J. Bio. Chem.281, 24721–24727 (2006).
  • Bolger GB, Peden AH, Steele MR et al. Attenuation of the activity of the cAMP-specific phosphodiesterase PDE4A5 by interaction with the immunophilin XAP2. J. Bio. Chem.278, 33351–33363 (2003).
  • de Oliveira SK, Hoffmeister M, Gambaryan S, Muller-Esterl W, Guimaraes JA, Smolenski AP. Phosphodiesterase 2A forms a complex with the co-chaperone XAP2 and regulates nuclear translocation of the aryl hydrocarbon receptor. J. Biol. Chem.282, 13656–13663 (2007).
  • Vargiolu M, Fusco D, Kurelac I et al. The tyrosine kinase receptor RET interacts in vivo with aryl hydrocarbon receptor-interacting protein to alter survivin availability. J. Clin. Endocrinol. Metab.94, 2571–2578 (2009).
  • Kashuba E, Kashuba V, Pokrovskaja K, Klein G, Szekely L. Epstein-Barr virus encoded nuclear protein EBNA-3 binds XAP-2, a protein associated with hepatitis B virus X antigen. Oncogene19, 1801–1806 (2000).
  • Meyer BK, Pray-Grant MG, Vanden Heuvel JP, Perdew GH. Hepatitis B virus X-associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. Mol. Cell. Biol.18, 978–988 (1998).
  • Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily: sensors of environmental and developmental signals. Ann. Rev. Pharmacol. Toxicol.40, 519–561 (2000).
  • Kazlauskas A, Poellinger L, Pongratz I. Evidence that the co-chaperone p23 regulates ligand responsiveness of the dioxin (Aryl hydrocarbon) receptor. J. Bio. Chem.274, 13519–13524 (1999).
  • Morales JL, Perdew GH. Carboxyl terminus of hsc70-interacting protein (CHIP) can remodel mature aryl hydrocarbon receptor (AhR) complexes and mediate ubiquitination of both the AhR and the 90 kDa heat-shock protein (hsp90) in vitro. Biochemistry46, 610–621 (2007).
  • Pearl LH, Prodromou C, Workman P. The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem. J.410, 439–453 (2008).
  • de Oliveira SK, Smolenski A. Phosphodiesterases link the aryl hydrocarbon receptor complex to cyclic nucleotide signaling. Biochem. Pharmacol.77, 723–733 (2009).
  • Park JH, Mangal D, Frey AJ, Harvey RG, Blair IA, Penning TM. Aryl hydrocarbon receptor facilitates DNA strand breaks and 8-oxo-2´-deoxyguanosine formation by the aldo-keto reductase product benzo[a]pyrene-7,8-dione. J. Bio. Chem.284, 29725–29734 (2009).
  • Grimmer G, Bohnke H. Polycyclic aromatic hydrocarbon profile analysis of high-protein foods, oils, and fats by gas chromatography. J. Assoc. Off. Anal. Chem.58, 725–733 (1975).
  • Dipple A. Formation, metabolism, and mechanism of action of polycyclic aromatic hydrocarbons. Cancer Res.43, 2422S-2425S (1983).
  • Rothman N, Poirier MC, Baser ME et al. Formation of polycyclic aromatic hydrocarbon-DNA adducts in peripheral white blood cells during consumption of charcoal-broiled beef. Carcinogenesis11, 1241–1243 (1990).
  • Hecht SS. Tobacco smoke carcinogens and lung cancer. J. Natl Cancer Inst.91, 1194–1210 (1999).
  • Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene21, 7435–7451 (2002).
  • Vogel CF, Sciullo E, Li W, Wong P, Lazennec G, Matsumura F. RelB, a new partner of aryl hydrocarbon receptor-mediated transcription. Mol. Endocrinol.21, 2941–2955 (2007).
  • Ramadoss P, Petrulis JR, Hollingshead BD, Kusnadi A, Perdew GH. Divergent roles of hepatitis B virus X-associated protein 2 (XAP2) in human versus mouse Ah receptor complexes. Biochemistry43, 700–709 (2004).
  • Petrulis JR, Kusnadi A, Ramadoss P, Hollingshead B, Perdew GH. The hsp90 co-chaperone XAP2 alters importin beta recognition of the bipartite nuclear localization signal of the Ah receptor and represses transcriptional activity. J. Bio. Chem.278, 2677–2685 (2003).
  • Petrulis JR, Hord NG, Perdew GH. Subcellular localization of the aryl hydrocarbon receptor is modulated by the immunophilin homolog hepatitis B virus X-associated protein 2. J. Bio. Chem.275, 37448–37453 (2000).
  • Reyes H, Reisz-Porszasz S, Hankinson O. Identification of the Ah receptor nuclear translocator protein (Arnt) as a component of the DNA binding form of the Ah receptor. Science256, 1193–1195 (1992).
  • Hankinson O. The aryl hydrocarbon receptor complex. Ann. Rev. Pharmacol. Toxicol.35, 307–340 (1995).
  • Fujii-Kuriyama Y, Mimura J. Molecular mechanisms of AhR functions in the regulation of cytochrome P450 genes. Biochem. Biophys. Res. Commun.338, 311–317 (2005).
  • Ikuta T, Tachibana T, Watanabe J, Yoshida M, Yoneda Y, Kawajiri K. Nucleocytoplasmic shuttling of the aryl hydrocarbon receptor. J. Biochem.127, 503–509 (2000).
  • Kazlauskas A, Sundstrom S, Poellinger L, Pongratz I. The hsp90 chaperone complex regulates intracellular localization of the dioxin receptor. Mol. Cell. Biol.21, 2594–2607 (2001).
  • Richter CA, Tillitt DE, Hannink M. Regulation of subcellular localization of the aryl hydrocarbon receptor (AhR). Arch. Biochem. Biophys.389, 207–217 (2001).
  • Oesch-Bartlomowicz B, Huelster A, Wiss O et al. Aryl hydrocarbon receptor activation by cAMP vs. dioxin: divergent signaling pathways. Proc. Natl Acad. Sci. USA102, 9218–9223 (2005).
  • Fernandez-Salguero P, Pineau T, Hilbert DM et al. Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science268, 722–726 (1995).
  • Schmidt JV, Su GH, Reddy JK, Simon MC, Bradfield CA. Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc. Natl Acad. Sci. USA93, 6731–6736 (1996).
  • Lahvis GP, Lindell SL, Thomas RS et al. Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proc. Natl Acad. Sci. USA97, 10442–10447 (2000).
  • Hollingshead BD, Petrulis JR, Perdew GH. The aryl hydrocarbon (Ah) receptor transcriptional regulator hepatitis B virus X-associated protein 2 antagonizes p23 binding to Ah receptor-Hsp90 complexes and is dispensable for receptor function. J. Bio. Chem.279, 45652–45661 (2004).
  • Paajarvi G, Viluksela M, Pohjanvirta R, Stenius U, Hogberg J. TCDD activates Mdm2 and attenuates the p53 response to DNA damaging agents. Carcinogenesis26, 201–208 (2005).
  • Weiss C, Faust D, Schreck I et al. TCDD deregulates contact inhibition in rat liver oval cells via Ah receptor, JunD and cyclin A. Oncogene27, 2198–2207 (2008).
  • Zudaire E, Cuesta N, Murty V et al. The aryl hydrocarbon receptor repressor is a putative tumor suppressor gene in multiple human cancers. J. Clin. Invest.118, 640–650 (2008).
  • Ray S, Swanson HI. Activation of the aryl hydrocarbon receptor by TCDD inhibits senescence: a tumor promoting event? Biochem. Pharmacol.77, 681–688 (2009).
  • Ishida M, Mikami S, Kikuchi E et al. Activation of the aryl hydrocarbon receptor pathway enhances cancer cell invasion by upregulating the MMP expression and is associated with poor prognosis in upper urinary tract urothelial cancer. Carcinogenesis31, 287–295 (2010).
  • Huang G, Elferink CJ. Multiple mechanisms are involved in Ah receptor-mediated cell cycle arrest. Mol. Pharmacol.67, 88–96 (2005).
  • Marlowe JL, Puga A. Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J. Cell. Biochem.96, 1174–1184 (2005).
  • Puga A, Barnes SJ, Dalton TP, Chang C, Knudsen ES, Maier MA. Aromatic hydrocarbon receptor interaction with the retinoblastoma protein potentiates repression of E2F-dependent transcription and cell cycle arrest. J. Bio. Chem.275, 2943–2950 (2000).
  • Peng L, Mayhew CN, Schnekenburger M, Knudsen ES, Puga A. Repression of Ah receptor and induction of transforming growth factor-beta genes in DEN-induced mouse liver tumors. Toxicology246, 242–247 (2008).
  • Barhoover MA, Hall JM, Greenlee WF, Thomas RS. Aryl hydrocarbon receptor regulates cell cycle progression in human breast cancer cells via a functional interaction with cyclin-dependent kinase 4. Mol. Pharmacol.77, 195–201 (2010).
  • Fan Y, Boivin GP, Knudsen ES, Nebert DW, Xia Y, Puga A. The aryl hydrocarbon receptor functions as a tumor suppressor of liver carcinogenesis. Cancer Res.70, 212–220 (2010).
  • Hall JM, Barhoover MA, Kazmin D, McDonnell DP, Greenlee WF, Thomas RS. Activation of the aryl-hydrocarbon receptor inhibits invasive and metastatic features of human breast cancer cells and promotes breast cancer cell differentiation. Mol. Endocrinol.24, 359–369 (2010).
  • Heliovaara E, Raitila A, Launonen V et al. The expression of AIP-related molecules in elucidation of cellular pathways in pituitary adenomas. Am. J. Pathol.175, 2501–2507 (2009).
  • Wyde ME, Braen AP, Hejtmancik M et al. Oral and dermal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces cutaneous papillomas and squamous cell carcinomas in female hemizygous Tg.AC transgenic mice. Toxicol. Sci.82, 34–45 (2004).
  • Hebert CD, Harris MW, Elwell MR, Birnbaum LS. Relative toxicity and tumor-promoting ability of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (PCDF), and 1,2,3,4,7,8-hexachlorodibenzofuran (HCDF) in hairless mice. Toxicol. Appl. Pharmacol.102, 362–377 (1990).
  • Poland A, Palen D, Glover E. Tumour promotion by TCDD in skin of HRS/J hairless mice. Nature300, 271–273 (1982).
  • Marlowe JL, Fan Y, Chang X et al. The aryl hydrocarbon receptor binds to E2F1 and inhibits E2F1-induced apoptosis. Mol. Biol. Cell.19, 3263–3271 (2008).
  • Jaffrain-Rea ML, Angelini M, Gargano D et al. Expression of aryl hydrocarbon receptor (AHR) and AHR-interacting protein in pituitary adenomas: pathological and clinical implications. Endocr. Relat. Cancer16, 1029–1043 (2009).
  • Trivellin G, Occhi G, Albiger N et al. AHRR is overexpressed in somatotropinomas. Presented at: XXXIV Giornate Endocrinologiche Pisane. Pisa, Italy, 10–12 June 2010.
  • McPhee I, Pooley L, Lobban M, Bolger G, Houslay MD. Identification, characterization and regional distribution in brain of RPDE-6 (RNPDE4A5), a novel splice variant of the PDE4A cyclic AMP phosphodiesterase family. Biochem. J.310(Pt 3), 965–974 (1995).
  • Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the a chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature340, 692–696 (1989).
  • Horvath E, Kovacs K. Pathology of acromegaly. Neuroendocrinology83, 161–165 (2006).
  • Melmed S. Aryl hydrocarbon receptor interacting protein and pituitary tumorigenesis: another interesting protein. J. Clin. Endocrinol. Metab.92, 1617–1619 (2007).
  • Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nat. Rev. Mol. Cell Biol.3, 401–410 (2002).
  • Fortugno P, Beltrami E, Plescia J et al. Regulation of survivin function by Hsp90. Proc. Natl Acad. Sci. USA100, 13791–13796 (2003).
  • Georgitsi M, Karhu A, Winqvist R et al. Mutation analysis of aryl hydrocarbon receptor interacting protein (AIP) gene in colorectal, breast, and prostate cancers. Br. J. Cancer96, 352–356 (2007).
  • Cazabat L, Guillaud-Bataille M, Bertherat J, Raffin-Sanson ML. Mutations of the gene for the aryl hydrocarbon receptor-interacting protein in pituitary adenomas. Horm. Res.71, 132–141 (2009).
  • Khoo SK, Pendek R, Nickolov R et al. Genome-wide scan identifies novel modifier loci of acromegalic phenotypes for isolated familial somatotropinoma. Endocr. Relat. Cancer16, 1057–1063 (2009).
  • Marrie P. Sur deux cas d’acromegalie. Hypertrophe singuliere no congénitale des extrémités supérieures, inférieures et cephalique. Révue Medicale Française6, 197–333 (1886).
  • de Herder WW. Acromegaly and gigantism in the medical literature. Case descriptions in the era before and the early years after the initial publication of Pierre Marie (1886). Pituitary12, 236–244 (2009).
  • Langer K. Über Wachstum des menschlichen Skelets, mit Bezug auf den Riesen. Denkschr der Kais Akad der Wissensch zu Wien Math-naturw Kl. 31 (1872).
  • Karhu A, Aaltonen LA. Susceptibility to pituitary neoplasia related to MEN-1, CDKN1B and AIP mutations: an update. Hum. Mol. Genet.16(Spec. No. 1), R73–R79 (2007).
  • Brandi ML, Gagel RF, Angeli A et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J. Clin. Endocrinol. Metab.86, 5658–5671 (2001).
  • Prescott RWG, Spruce BA, Kendall-Taylor P, Hall K, Hall R. Acromegaly and gigantism presenting in two brothers. Presented at: 1st Joint Meeting British Endocrine Society London, UK, 25–27 May 1982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.