67
Views
38
CrossRef citations to date
0
Altmetric
Review

Anterior pituitary adenomas: inherited syndromes, novel genes and molecular pathways

, &
Pages 697-709 | Published online: 10 Jan 2014

References

  • Keil MF, Stratakis CA. Pituitary tumors in childhood: update of diagnosis, treatment and molecular genetics. Expert Rev. Neurother.8(4), 563–574 (2008).
  • Daly AF, Rixhon M, Adam C, Dempegioti A, Tichomirowa MA, Beckers A. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J. Clin. Endocrinol. Metab.91(12), 4769–4775 (2006).
  • Ezzat S, Asa SL, Couldwell WT et al. The prevalence of pituitary adenomas: a systematic review. Cancer101(3), 613–619 (2004).
  • Fernandez A, Karavitaki N, Wass JA. Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin. Endocrinol. (Oxf.)72(3), 377–382 (2010).
  • Daly AF, Tichomirowa MA, Beckers A. The epidemiology and genetics of pituitary adenomas. Best Pract. Res. Clin. Endocrinol. Metab.23(5), 543–554 (2009).
  • Daly AF, Beckers A. Update on the treatment of pituitary adenomas: familial and genetic considerations. Acta Clin. Belg.63(6), 418–424 (2008).
  • Marx SJ, Simonds WF. Hereditary hormone excess: genes, molecular pathways, and syndromes. Endocr. Rev.26(5), 615–661 (2005).
  • Scheithauer BW, Laws ER Jr, Kovacs K, Horvath E, Randall RV, Carney JA. Pituitary adenomas of the multiple endocrine neoplasia type I syndrome. Semin. Diagn. Pathol.4(3), 205–211 (1987).
  • Tichomirowa MA, Daly AF, Beckers A. Familial pituitary adenomas. J. Intern. Med.266(1), 5–18 (2009).
  • Asa SL, Somers K, Ezzat S. The MEN-1 gene is rarely down-regulated in pituitary adenomas. J. Clin. Endocrinol. Metab.83(9), 3210–3212 (1998).
  • Kaltsas GA, Kola B, Borboli N et al. Sequence analysis of the PRKAR1A gene in sporadic somatotroph and other pituitary tumours. Clin. Endocrinol. (Oxf.)57(4), 443–448 (2002).
  • Lania AG, Mantovani G, Ferrero S et al. Proliferation of transformed somatotroph cells related to low or absent expression of protein kinase a regulatory subunit 1A protein. Cancer Res.64(24), 9193–9198 (2004).
  • Poncin J, Stevenaert A, Beckers A. Somatic MEN1 gene mutation does not contribute significantly to sporadic pituitary tumorigenesis. Eur. J. Endocrinol.140(6), 573–576 (1999).
  • Pellegata NS, Quintanilla-Martinez L, Siggelkow H et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc. Natl Acad. Sci. USA103(42), 15558–15563 (2006).
  • Vierimaa O, Georgitsi M, Lehtonen R et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science312(5777), 1228–1230 (2006).
  • Daly AF, Vanbellinghen JF, Khoo SK et al. Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J. Clin. Endocrinol. Metab.92(5), 1891–1896 (2007).
  • Cazabat L, Libe R, Perlemoine K et al. Germline inactivating mutations of the aryl hydrocarbon receptor-interacting protein gene in a large cohort of sporadic acromegaly: mutations are found in a subset of young patients with macroadenomas. Eur. J. Endocrinol.157(1), 1–8 (2007).
  • Georgitsi M, Raitila A, Karhu A et al. Molecular diagnosis of pituitary adenoma predisposition caused by aryl hydrocarbon receptor-interacting protein gene mutations. Proc. Natl Acad. Sci. USA104(10), 4101–4105 (2007).
  • Georgitsi M, Raitila A, Karhu A et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J. Clin. Endocrinol. Metab.92(8), 3321–3325 (2007).
  • Agarwal SK, Mateo CM, Marx SJ. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J. Clin. Endocrinol. Metab.94(5), 1826–1834 (2009).
  • Verges B, Boureille F, Goudet P et al. Pituitary disease in MEN type 1 (MEN1): data from the France-Belgium MEN1 multicenter study. J. Clin. Endocrinol. Metab.87(2), 457–465 (2002).
  • Matsuzaki LN, Canto-Costa MH, Hauache OM. Cushing’s disease as the first clinical manifestation of multiple endocrine neoplasia type 1 (MEN1) associated with an R460X mutation of the MEN1 gene. Clin. Endocrinol. (Oxf.)60(1), 142–143 (2004).
  • Rix M, Hertel NT, Nielsen FC et al. Cushing’s disease in childhood as the first manifestation of multiple endocrine neoplasia syndrome type 1. Eur. J. Endocrinol.151(6), 709–715 (2004).
  • Bilodeau S, Vallette-Kasic S, Gauthier Y et al. Role of Brg1 and HDAC2 in GR trans-repression of the pituitary POMC gene and misexpression in Cushing disease. Genes Dev.20(20), 2871–2886 (2006).
  • Karl M, Von Wichert G, Kempter E et al. Nelson’s syndrome associated with a somatic frame shift mutation in the glucocorticoid receptor gene. J. Clin. Endocrinol. Metab.81(1), 124–129 (1996).
  • Kawashima ST, Usui T, Sano T et al. P53 gene mutation in an atypical corticotroph adenoma with Cushing’s disease. Clin. Endocrinol. (Oxf.)70(4), 656–657 (2009).
  • Hao W, Skarulis MC, Simonds WF et al. Multiple endocrine neoplasia type 1 variant with frequent prolactinoma and rare gastrinoma. J. Clin. Endocrinol. Metab.89(8), 3776–3784 (2004).
  • Stock JL, Warth MR, Teh BT et al. A kindred with a variant of multiple endocrine neoplasia type 1 demonstrating frequent expression of pituitary tumors but not linked to the multiple endocrine neoplasia type 1 locus at chromosome region 11q13. J. Clin. Endocrinol. Metab.82(2), 486–492 (1997).
  • Melmed S. Acromegaly pathogenesis and treatment. J. Clin. Invest.119(11), 3189–3202 (2009).
  • Pertuit M, Barlier A, Enjalbert A, Gerard C. Signalling pathway alterations in pituitary adenomas: involvement of Gsα, cAMP and mitogen-activated protein kinases. J. Neuroendocrinol.21(11), 869–877 (2009).
  • Sands WA, Palmer TM. Regulating gene transcription in response to cyclic AMP elevation. Cell Signal.20(3), 460–466 (2008).
  • Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol. Ther.109(3), 366–398 (2006).
  • Mantovani G, Ballare E, Giammona E, Beck-Peccoz P, Spada A. The Gsα gene: predominant maternal origin of transcription in human thyroid gland and gonads. J. Clin. Endocrinol. Metab.87(10), 4736–4740 (2002).
  • Dumitrescu CE, Collins MT. McCune-Albright syndrome. Orphanet J. Rare Dis.3, 12 (2008).
  • Volkl TM, Dorr HG. McCune-Albright syndrome: clinical picture and natural history in children and adolescents. J. Pediatr. Endocrinol. Metab.19(Suppl. 2), 551–559 (2006).
  • Cuttler L, Jackson JA, Saeed uz-Zafar M, Levitsky LL, Mellinger RC, Frohman LA. Hypersecretion of growth hormone and prolactin in McCune-Albright syndrome. J. Clin. Endocrinol. Metab.68(6), 1148–1154 (1989).
  • Kovacs K, Horvath E, Thorner MO, Rogol AD. Mammosomatotroph hyperplasia associated with acromegaly and hyperprolactinemia in a patient with the McCune-Albright syndrome. A histologic, immunocytologic and ultrastructural study of the surgically-removed adenohypophysis. Virchows Arch. A Pathol. Anat. Histopathol.403(1), 77–86 (1984).
  • Uwaifo GI, Robey PG, Akintoye SO, Collins MT. Clinical picture: fuel on the fire. Lancet357(9273), 2011 (2001).
  • Galland F, Kamenicky P, Affres H et al. McCune-Albright syndrome and acromegaly: effects of hypothalamopituitary radiotherapy and/or pegvisomant in somatostatin analog-resistant patients. J. Clin. Endocrinol. Metab.91(12), 4957–4961 (2006).
  • Boggild MD, Jenkinson S, Pistorello M et al. Molecular genetic studies of sporadic pituitary tumors. J. Clin. Endocrinol. Metab.78(2), 387–392 (1994).
  • Clementi E, Malgaretti N, Meldolesi J, Taramelli R. A new constitutively activating mutation of the Gs protein α subunit-Gsp oncogene is found in human pituitary tumours. Oncogene5(7), 1059–1061 (1990).
  • Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the α chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature340(6236), 692–696 (1989).
  • Bertherat J, Chanson P, Montminy M. The cyclic adenosine 3´,5´-monophosphate-responsive factor CREB is constitutively activated in human somatotroph adenomas. Mol. Endocrinol.9(7), 777–783 (1995).
  • Picard C, Silvy M, Gerard C et al. Gsα overexpression and loss of Gsα imprinting in human somatotroph adenomas: association with tumor size and response to pharmacologic treatment. Int. J. Cancer121(6), 1245–1252 (2007).
  • Spada A, Arosio M, Bochicchio D et al. Clinical, biochemical, and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase. J. Clin. Endocrinol. Metab.71(6), 1421–1426 (1990).
  • Ruggeri RM, Santarpia L, Curtò L et al. Non-functioning pituitary adenomas infrequently harbor G-protein gene mutations J. Endocrinol. Invest.31(11), 946–949 (2008).
  • Persani L, Borgato S, Lania A et al. Relevant cAMP-specific phosphodiesterase isoforms in human pituitary: effect of Gs(α) mutations. J. Clin. Endocrinol. Metab.86(8), 3795–3800 (2001).
  • Bossis I, Voutetakis A, Bei T, Sandrini F, Griffin KJ, Stratakis CA. Protein kinase A and its role in human neoplasia: the Carney complex paradigm. Endocr. Relat. Cancer11(2), 265–280 (2004).
  • Kirschner LS, Carney JA, Pack SD et al. Mutations of the gene encoding the protein kinase A type I-α regulatory subunit in patients with the Carney complex. Nat. Genet.26(1), 89–92 (2000).
  • Bertherat J, Horvath A, Groussin L et al. Mutations in regulatory subunit type 1A of cyclic adenosine 5’-monophosphate-dependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes. J. Clin. Endocrinol. Metab.94(6), 2085–2091 (2009).
  • Pack SD, Kirschner LS, Pak E, Zhuang Z, Carney JA, Stratakis CA. Genetic and histologic studies of somatomammotropic pituitary tumors in patients with the “complex of spotty skin pigmentation, myxomas, endocrine overactivity and schwannomas” (Carney complex). J. Clin. Endocrinol. Metab.85(10), 3860–3865 (2000).
  • Stergiopoulos SG, Abu-Asab MS, Tsokos M, Stratakis CA. Pituitary pathology in Carney complex patients. Pituitary7(2), 73–82 (2004).
  • Stratakis CA. Cortisol and growth hormone: clinical implications of a complex, dynamic relationship. Pediatr. Endocrinol. Rev.3(Suppl. 2), 333–338 (2006).
  • Keil MF, Stratakis CA. Advances in the diagnosis, treatment, and molecular genetics of pituitary adenomas in childhood. US Endocrinol.4(2), 81–85 (2009).
  • Sandrini F, Kirschner LS, Bei T et al. PRKAR1A, one of the Carney complex genes, and its locus (17q22–24) are rarely altered in pituitary tumours outside the Carney complex. J. Med. Genet.39(12), e78 (2002).
  • Lania A, Filopanti M, Corbetta S et al. Effects of hypothalamic neuropeptides on extracellular signal-regulated kinase (ERK1 and ERK2) cascade in human tumoral pituitary cells. J. Clin. Endocrinol. Metab.88(4), 1692–1696 (2003).
  • Mantovani G, Bondioni S, Ferrero S et al. Effect of cyclic adenosine 3´,5´-monophosphate/protein kinase a pathway on markers of cell proliferation in nonfunctioning pituitary adenomas. J. Clin. Endocrinol. Metab.90(12), 6721–6724 (2005).
  • Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature410(6824), 37–40 (2001).
  • Raman M, Chen W, Cobb MH. Differential regulation and properties of MAPKs. Oncogene26(22), 3100–3112 (2007).
  • McKay MM, Morrison DK. Integrating signals from RTKs to ERK/MAPK. Oncogene26(22), 3113–3121 (2007).
  • Weston CR, Lambright DG, Davis RJ. Signal transduction. MAP kinase signaling specificity. Science296(5577), 2345–2347 (2002).
  • Yamamoto T, Ebisuya M, Ashida F, Okamoto K, Yonehara S, Nishida E. Continuous ERK activation downregulates antiproliferative genes throughout G1 phase to allow cell-cycle progression. Curr. Biol.16(12), 1171–1182 (2006).
  • Stork PJ, Schmitt JM. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol.12(6), 258–266 (2002).
  • Leevers SJ, Vanhaesebroeck B, Waterfield MD. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr. Opin. Cell Biol.11(2), 219–225 (1999).
  • Carracedo A, Pandolfi PP. The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene27(41), 5527–5541 (2008).
  • Zebisch A, Troppmair J. Back to the roots: the remarkable RAF oncogene story. Cell. Mol. Life Sci.63(11), 1314–1330 (2006).
  • Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene26(22), 3279–3290 (2007).
  • Fernandez M, Sanchez-Franco F, Palacios N, Sanchez I, Fernandez C, Cacicedo L. IGF-I inhibits apoptosis through the activation of the phosphatidylinositol 3-kinase/Akt pathway in pituitary cells. J. Mol. Endocrinol.33(1), 155–163 (2004).
  • Fernandez M, Sanchez-Franco F, Palacios N, Sanchez I, Villuendas G, Cacicedo L. Involvement of vasoactive intestinal peptide on insulin-like growth factor I-induced proliferation of rat pituitary lactotropes in primary culture: evidence for an autocrine and/or paracrine regulatory system. Neuroendocrinology77(5), 341–352 (2003).
  • Romano D, Magalon K, Pertuit M et al. Conditional overexpression of the wild-type Gs α as the GSP oncogene initiates chronic extracellularly regulated kinase 1/2 activation and hormone hypersecretion in pituitary cell lines. Endocrinology148(6), 2973–2983 (2007).
  • Lin Y, Jiang X, Shen Y et al. Frequent mutations and amplifications of the PIK3CA gene in pituitary tumors. Endocr. Relat. Cancer16(1), 301–310 (2009).
  • Ewing I, Pedder-Smith S, Franchi G et al. A mutation and expression analysis of the oncogene BRAF in pituitary adenomas. Clin. Endocrinol. (Oxf.)66(3), 348–352 (2007).
  • Musat M, Korbonits M, Kola B et al. Enhanced protein kinase B/Akt signalling in pituitary tumours. Endocr. Relat. Cancer12(2), 423–433 (2005).
  • Marx S, Spiegel AM, Skarulis MC, Doppman JL, Collins FS, Liotta LA. Multiple endocrine neoplasia type 1: clinical and genetic topics. Ann. Intern. Med.129(6), 484–494 (1998).
  • Agarwal SK, Kennedy PA, Scacheri PC et al. Menin molecular interactions: insights into normal functions and tumorigenesis. Horm. Metab. Res.37(6), 369–374 (2005).
  • Milne TA, Hughes CM, Lloyd R et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc. Natl Acad. Sci. USA102(3), 749–754 (2005).
  • Lemos MC, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum. Mutat.29(1), 22–32 (2008).
  • Beckers A, Betea D, Valdes Socin H, Stevenaert A. The treatment of sporadic versus MEN1-related pituitary adenomas. J. Intern. Med.253(6), 599–605 (2003).
  • Theodoropoulou M, Cavallari I, Barzon L et al. Differential expression of menin in sporadic pituitary adenomas. Endocr. Relat. Cancer11(2), 333–344 (2004).
  • Ozawa A, Agarwal SK, Mateo CM et al. The parathyroid/pituitary variant of multiple endocrine neoplasia type 1 usually has causes other than p27Kip1 mutations. J. Clin. Endocrinol. Metab.92(5), 1948–1951 (2007).
  • Fritz A, Walch A, Piotrowska K et al. Recessive transmission of a multiple endocrine neoplasia syndrome in the rat. Cancer Res.62(11), 3048–3051 (2002).
  • Vandeva S, Tichomirowa MA, Zacharieva S, Daly AF, Beckers A. Genetic factors in the development of pituitary adenomas. Endocr. Dev.17, 121–133 (2010).
  • Jin L, Qian X, Kulig E et al. Transforming growth factor-β, transforming growth factor-β receptor II, and p27Kip1 expression in nontumorous and neoplastic human pituitaries. Am. J. Pathol.151(2), 509–519 (1997).
  • Korbonits M, Chahal HS, Kaltsas G et al. Expression of phosphorylated p27(Kip1) protein and Jun activation domain-binding protein 1 in human pituitary tumors. J. Clin. Endocrinol. Metab.87(6), 2635–2643 (2002).
  • Verloes A, Stevenaert A, Teh BT, Petrossians P, Beckers A. Familial acromegaly: case report and review of the literature. Pituitary1(3–4), 273–277 (1999).
  • Leontiou CA, Gueorguiev M, van der Spuy J et al. The role of the aryl hydrocarbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. J. Clin. Endocrinol. Metab.93(6), 2390–2401 (2008).
  • Daly AF, Tichomirowa MA, Beckers A. Genetic, molecular and clinical features of familial isolated pituitary adenomas. Horm. Res.71(Suppl. 2), 116–122 (2009).
  • Daly AF, Jaffrain-Rea ML, Ciccarelli A et al. Clinical characterization of familial isolated pituitary adenomas. J. Clin. Endocrinol. Metab.91(9), 3316–3323 (2006).
  • Barlier A, Vanbellinghen JF, Daly AF et al. Mutations in the aryl hydrocarbon receptor interacting protein gene are not highly prevalent among subjects with sporadic pituitary adenomas. J. Clin. Endocrinol. Metab.92(5), 1952–1955 (2007).
  • Pei L, Melmed S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol. Endocrinol.11(4), 433–441 (1997).
  • Salehi F, Kovacs K, Scheithauer BW, Lloyd RV, Cusimano M. Pituitary tumor-transforming gene in endocrine and other neoplasms: a review and update. Endocr. Relat. Cancer15(3), 721–743 (2008).
  • Abbud RA, Takumi I, Barker EM et al. Early multipotential pituitary focal hyperplasia in the α-subunit of glycoprotein hormone-driven pituitary tumor-transforming gene transgenic mice. Mol. Endocrinol.19(5), 1383–1391 (2005).
  • Folkman J, Klagsbrun M. Angiogenic factors. Science235(4787), 442–447 (1987).
  • Chesnokova V, Zonis S, Kovacs K et al. p21(Kip1) restrains pituitary tumor growth. Proc. Natl Acad. Sci. USA105(45), 17498–17503 (2008).
  • Barboza JA, Liu G, Ju Z, El-Naggar AK, Lozano G. p21 delays tumor onset by preservation of chromosomal stability. Proc. Natl Acad. Sci. USA103(52), 19842–19847 (2006).
  • Shen KC, Heng H, Wang Y et al. ATM and p21 cooperate to suppress aneuploidy and subsequent tumor development. Cancer Res.65(19), 8747–8753 (2005).
  • Mooi WJ, Peeper DS. Oncogene-induced cell senescence – halting on the road to cancer. N. Engl. J. Med.355(10), 1037–1046 (2006).
  • Chesnokova V, Zonis S, Rubinek T et al. Senescence mediates pituitary hypoplasia and restrains pituitary tumor growth. Cancer Res.67(21), 10564–10572 (2007).
  • Uccella S, Tibiletti MG, Bernasconi B, Finzi G, Oldrini R, Capella C. Aneuploidy, centrosome alteration and securin overexpression as features of pituitary somatotroph and lactotroph adenomas. Anal. Quant. Cytol. Histol.27(5), 241–252 (2005).
  • Bazina M, Vukojevic K, Roje D, Saraga-Babic M. Influence of growth and transcriptional factors, and signaling molecules on early human pituitary development. J. Mol. Histol.40(4), 277–286 (2009).
  • McAndrew J, Paterson AJ, Asa SL, McCarthy KJ, Kudlow JE. Targeting of transforming growth factor-α expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenomas. Endocrinology136(10), 4479–4488 (1995).
  • LeRiche VK, Asa SL, Ezzat S. Epidermal growth factor and its receptor (EGF-R) in human pituitary adenomas: EGF-R correlates with tumor aggressiveness. J. Clin. Endocrinol. Metab.81(2), 656–662 (1996).
  • Saeger W. Expression of growth factors in normal and neoplastic pituitary tissues. Endocr. Pathol.11(4), 295–300 (2000).
  • Ezzat S, Zheng L, Zhu XF, Wu GE, Asa SL. Targeted expression of a human pituitary tumor-derived isoform of FGF receptor-4 recapitulates pituitary tumorigenesis. J. Clin. Invest.109(1), 69–78 (2002).
  • Morita K, Takano K, Yasufuku-Takano J et al. Expression of pituitary tumour-derived, N-terminally truncated isoform of fibroblast growth factor receptor 4 (ptd-FGFR4) correlates with tumour invasiveness but not with G-protein α subunit (GSP) mutation in human GH-secreting pituitary adenomas. Clin. Endocrinol. (Oxf.)68(3), 435–441 (2008).
  • Massague J. How cells read TGF-β signals. Nat. Rev. Mol. Cell Biol.1(3), 169–178 (2000).
  • Kawabata M, Imamura T, Miyazono K. Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev.9(1), 49–61 (1998).
  • Gilboa L, Nohe A, Geissendorfer T, Sebald W, Henis YI, Knaus P. Bone morphogenetic protein receptor complexes on the surface of live cells: a new oligomerization mode for serine/threonine kinase receptors. Mol. Biol. Cell11(3), 1023–1035 (2000).
  • Heldin CH, Miyazono K, ten Dijke P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature390(6659), 465–471 (1997).
  • Haedo MR, Gerez J, Fuertes M et al. Regulation of pituitary function by cytokines. Horm. Res.72(5), 266–274 (2009).
  • Giacomini D, Paez-Pereda M, Theodoropoulou M et al. Bone morphogenetic protein-4 control of pituitary pathophysiology. Front. Horm. Res.35, 22–31 (2006).
  • Paez-Pereda M, Giacomini D, Refojo D et al. Involvement of bone morphogenetic protein 4 (BMP-4) in pituitary prolactinoma pathogenesis through a Smad/estrogen receptor crosstalk. Proc. Natl Acad. Sci. USA100(3), 1034–1039 (2003).
  • Giacomini D, Haedo M, Gerez J et al. Differential gene expression in models of pituitary prolactin-producing tumoral cells. Horm. Res.71(Suppl. 2), 88–94 (2009).
  • Kurie JM. The biologic basis for the use of retinoids in cancer prevention and treatment. Curr. Opin Oncol.11(6), 497–502 (1999).
  • Paez-Pereda M, Kovalovsky D, Hopfner U et al. Retinoic acid prevents experimental Cushing syndrome. J. Clin. Invest.108(8), 1123–1131 (2001).
  • Weinberg RA. The retinoblastoma protein and cell cycle control. Cell81(3), 323–330 (1995).
  • Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. Effects of an Rb mutation in the mouse. Nature359(6393), 295–300 (1992).
  • Honda S, Tanaka-Kosugi C, Yamada S et al. Human pituitary adenomas infrequently contain inactivation of retinoblastoma 1 gene and activation of cyclin dependent kinase 4 gene. Endocr. J.50(3), 309–318 (2003).
  • Simpson DJ, Hibberts NA, McNicol AM, Clayton RN, Farrell WE. Loss of pRb expression in pituitary adenomas is associated with methylation of the Rb1 CpG island. Cancer Res.60(5), 1211–1216 (2000).
  • Yoshino A, Katayama Y, Ogino A et al. Promoter hypermethylation profile of cell cycle regulator genes in pituitary adenomas. J. Neurooncol.83(2), 153–162 (2007).
  • Fedele M, Fusco A. Role of the high mobility group A (HMGA) proteins in the regulation of pituitary cell cycle. J. Mol. Endocrinol.44(6), 309–118 (2010).
  • Fusco A, Fedele M. Roles of HMGA proteins in cancer. Nat. Rev. Cancer7(12), 899–910 (2007).
  • Ashar HR, Fejzo MS, Tkachenko A et al. Disruption of the architectural factor HMGI-C: DNA-binding AT hook motifs fused in lipomas to distinct transcriptional regulatory domains. Cell82(1), 57–65 (1995).
  • Schoenmakers EF, Wanschura S, Mols R, Bullerdiek J, Van den Berghe H, Van de Ven WJ. Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nat. Genet.10(4), 436–444 (1995).
  • Fedele M, Battista S, Kenyon L et al. Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene21(20), 3190–3198 (2002).
  • Fedele M, Visone R, De Martino I et al. HMGA2 induces pituitary tumorigenesis by enhancing E2F1 activity. Cancer Cell9(6), 459–471 (2006).
  • Pagotto U, Arzberger T, Theodoropoulou M et al. The expression of the antiproliferative gene ZAC is lost or highly reduced in nonfunctioning pituitary adenomas. Cancer Res.60(24), 6794–6799 (2000).
  • Zhao J, Dahle D, Zhou Y, Zhang X, Klibanski A. Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J. Clin. Endocrinol. Metab.90(4), 2179–2186 (2005).
  • Zhang X, Rice K, Wang Y et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology151(3), 939–947 (2010).
  • Gejman R, Batista DL, Zhong Y et al. Selective loss of MEG3 expression and intergenic differentially methylated region hypermethylation in the MEG3/DLK1 locus in human clinically nonfunctioning pituitary adenomas. J. Clin. Endocrinol. Metab.93(10), 4119–4125 (2008).
  • Zhao J, Zhang X, Zhou Y, Ansell PJ, Klibanski A. Cyclic AMP stimulates MEG3 gene expression in cells through a cAMP-response element (CRE) in the MEG3 proximal promoter region. Int. J. Biochem. Cell Biol.38(10), 1808–1820 (2006).
  • Ezzat S, Asa SL. The emerging role of the Ikaros stem cell factor in the neuroendocrine system. J. Mol. Endocrinol.41(2), 45–51 (2008).
  • Ezzat S, Yu S, Asa SL. Ikaros isoforms in human pituitary tumors: distinct localization, histone acetylation, and activation of the 5´ fibroblast growth factor receptor-4 promoter. Am. J. Pathol.163(3), 1177–1184 (2003).
  • Dudley KJ, Revill K, Clayton RN, Farrell WE. Pituitary tumours: all silent on the epigenetics front. J. Mol. Endocrinol.42(6), 461–468 (2009).
  • Stratakis CA, Tichomirowa MA, Boikos S et al. The role of germline AIP, MEN1, PRKAR1A,CDKN1B and CDKN2C mutations causing pituitary adenomas in large cohort of children, adolescents and patients with genetic syndromes. Clin. Genet. (2010) (In press).
  • Georgitsi M, De Menis E, Cannavò S et al. Aryl hydrocarbon receptor interacting protein (AIP) gene mutation analysis in children and adolescents with sporadic pituitary adenomas. Clin. Endocrinol. (Oxf.)69(4), 621–627 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.