49
Views
3
CrossRef citations to date
0
Altmetric
Review

Targeting the Wnt signaling pathway for the development of novel therapies for osteoporosis

&
Pages 711-722 | Published online: 10 Jan 2014

References

  • Consensus Development Conference on Osteoporosis. Am. J. Med.95(5A), 1S–78S (1993).
  • Cummings SR, Martin JS, McClung MR et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med.361(8), 756–765 (2009).
  • Bone HG, McClung MR, Roux C et al. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J. Bone Miner. Res.25(5), 937–947 (2010).
  • McClung M, Bone H, Dempster D et al.Phase 3 fracture trial of odanacatib for osteoporosis- study design. Bone47, S217–S218 (2010).
  • Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Ann. Rev. Cell Dev. Bio20, 781–810 (2004).
  • Gordon MD, Nusse R. Wnt Signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem.281(32), 22429–22433 (2006).
  • Carmon KS, Loose DS. Development of a bioassay for detection of Wnt-binding affinities for individual frizzled receptors. Anal. Biochem.401(2), 288–294 (2010).
  • Cavallo RA, Cox RT, Moline MM et al. Drosophila Tcf and Groucho interact to repress Wingless signaling activity. Nature395(6702), 604–608 (1998).
  • Hecht A, Vleminckx K, Stemmler MP, van Roy F. The p300/CBP acetyltransferases function as transcriptional coactivators of β-catenin in vertebrates. EMBO J.19(8), 1839–1850 (2000).
  • Gaur T, Lengner CJ, Hovhannisyan H et al. Canonical Wnt signaling promotes osteogenesis by directly stimulating Runx-2 gene expression. J. Bio Chem.280(39), 33132–33140 (2005).
  • Glass DA 2nd, Bialek P, Ahn JD et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast formation. Dev. Cell8(5), 751–764 (2005).
  • Gong Y, Slee RB, Fukai N et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell107(4), 513–523 (2001).
  • Boyden LM, Mao J, Belsky J et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med.346(20), 1513–1521 (2002).
  • Little RD, Carulli JP, Del Mastro RG et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet.70(1), 11–19 (2002).
  • Ohazama A, Johnson EB, Ota MS et al. Lrp4 modulates extracellular integration of cell signaling pathways in development. PLoS ONE3(12), e4092 (2008).
  • Choi HY, Dieckmann M, Herz J, Niemeier A. Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS ONE4(110), e7930 (2009).
  • Styrkarsdottir U, Halldorsson BV, Gretarsdottir S et al. New sequence variants associated with bone mineral density. Nat. Genet.41(1), 15–7 (2009).
  • Rivadeneira F, Styrkársdottir U, Estrada K et al. Genetic Factors for Osteoporosis (GEFOS) Consortium. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat. Genet.41(11), 1199–1206 (2009).
  • Balemans W, Ebeling M, Patel N et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet.10(5), 537–43 (2001).
  • Staehling-Hampton K, Proll S, Paeper BW et al. A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am. J. Med. Genet.110(2), 144–152 (2002).
  • Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling. Dev. Cell5(3), 367–377 (2003).
  • Yoda A, Oishi I, Minami Y. Expression and function of the Ror-family receptor tyrosine kinases during development: lessons from genetic analyses of nematodes, mice, and humans. J. Recept. Signal. Transduct. Res.23(1), 1–15 (2003).
  • Tu X, Joeng KS, Nakayama KI et al. Noncanonical Wnt signaling through G protein-linked PKCδ activation promotes bone formation. Dev. Cell12(1), 113–127 (2007).
  • Yu HC, Wu TC, Chen MR, Liu SW, Chen JH, Lin KM. Mechanical stretching induces osteoprotegerin in differentiating C2C12 precursor cells through noncanonical Wnt pathways. J. Bone Miner. Res.25(5), 1128–1137 (2010).
  • Arnsdorf EJ, Tummala P, Jacobs CR. Non-canonical Wnt signaling and N-cadherin related β-catenin signaling play a role in mechanically induced osteogenic cell fate. PLoS ONE4(4), e5388 (2009).
  • Caverzasio J. Non-canonical Wnt signaling: what is its role in bone? IBMS Bonekey6(3), 107–115 (2009).
  • Liu Y, Bodine PV, Billiard J. Ror2, a novel modulator of osteogenesis. J. Musculoskelet. Neuronal Interact.7(4), 323–324 (2007).
  • Poole KE, van Bezooijen RL, Loveridge N et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J.19 (13), 1842–1844 (2005).
  • Winkler DG, Sutherland MK, Geoghegan JC et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J.22(23), 6267–6276 (2003).
  • van Bezooijen RL, Papapoulos SE, Löwik CW. Bone morphogenetic proteins and their antagonists: the sclerostin paradigm. J. Endocrinol. Invest.28(8 Suppl.), 15–17 (2005).
  • ten Dijke P, Krause C, de Gorter DJ, Löwik CW, van Bezooijen RL. Osteocyte-derived sclerostin inhibits bone formation: its role in bone morphogenetic protein and Wnt signaling. J. Bone Joint Surg. Am.90(Suppl. 1), 31–35 (2008).
  • van Bezooijen RL, Svensson JP, Eefting D et al. Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J. Bone Miner. Res.22(1), 19–28 (2007).
  • Semënov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J. Biol. Chem.280(29), 26770–26775 (2005).
  • Li X, Zhang Y, Kang H et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem.280(20), 19883–19887 (2005).
  • Semenov MV, He X. LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J. Biol. Chem.281(50), 38276–38284 (2006).
  • Li X, Ominsky MS, Niu QT et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J. Bone Miner. Res.23(6), 860–869 (2008).
  • Li X, Ominsky MS, Warmington KS et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J. Bone Miner. Res.24(4), 578–588 (2009).
  • Bell KL, Loveridge N, Power J, Garrahan N, Meggitt BF, Reeve J. Regional differences in cortical porosity in the fractured femoral neck. Bone24 (1), 57–64 (1999).
  • Wachter NJ, Krischak GD, Mentzel M et al. Correlation of bone mineral density with strength and microstructural parameters of cortical bone in vitro. Bone31(1), 90–95 (2002).
  • Ominsky M, Vlasseros F, Jolette J et al. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J. Bone Miner. Res.25(5), 948–959 (2010).
  • Ominsky M, Samadfam R, Jolette J et al. Sclerostin monoclonal antibody stimulates bone formation and improves the strength and density of the fracture callus and lumbar spine in a primate fibular osteotomy model. Presented at: 31st Annual Meeting of the American Society for Bone and Mineral Research. Denver, CO, USA, 11–15 September 2009.
  • Eddleston A, Marenzana M, Moore AR et al. A short treatment with an antibody to sclerostin can inhibit bone loss in an ongoing model of colitis. J. Bone Miner. Res.24(10), 1662–1671 (2009).
  • Li X, Warmington K, Niu Q et al. Increased bone formation and bone mass by sclerostin antibody was not blunted by pretreatment with alendronate in ovariectomized rats with established osteopenia. Presented at: 31st Annual Meeting of the American Society for Bone and Mineral Research. Denver, CO, USA, 11–15 September 2009.
  • Li X, Niu Q, Warmington K et al. Increased modeling-based bone formation by sclerostin antibody was not altered by co-treatment with alendronate in ovariectomized rats. Presented at: 31st Annual Meeting of the American Society for Bone and Mineral Research. Denver, CO, USA, 11–15 September 2009.
  • Padhi D, Graham J, Stouch B, Fang L, Posvar E. Single-dose, placebo-controlled, randomised study of AMG 785, a sclerostin monoclonal antibody. J. Bone Miner. Res. DOI: 10.1002/jbmr.173 (2010) (Epub ahead of print).
  • Gardner JC, van Bezooijen RL, Mervis B et al. Bone mineral density in sclerosteosis; affected individuals and gene carriers. J. Clin. Endocrinol. Metab.90 (12), 6392–6395 (2005).
  • Compston JE. Skeletal actions of intermittent parathyroid hormone: effects on bone remodelling and structure. Bone40(6), 1447–1452 (2007).
  • Ma YL, Zeng Q, Donley DW et al. Teriparatide increases bone formation in modeling and remodeling osteons and enhances IGF-II immunoreactivity in postmenopausal women with osteoporosis. J. Bone Miner. Res.21(6), 855–864 (2006).
  • Lindsay R, Cosman F, Zhou H et al. A novel tetracycline labeling schedule for longitudinal evaluation of the short-term effects of anabolic therapy with a single iliac crest bone biopsy: early actions of teriparatide. J. Bone Miner. Res.21(3), 366–373 (2006).
  • Krupnik VE, Sharp JD, Jiang C et al. Functional and structural diversity of the human Dickkopf gene family. Gene238(2), 301–313 (1999).
  • Mao B, Wu W, Davidson G et al. Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signaling. Nature417(6819), 664–667 (2002).
  • Semënov MV, Tamai K, Brott BK, Kühl M, Sokol S, He X. Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr. Biol.11(12), 951–961 (2001).
  • Li X, Liu P, Liu W et al. Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat. Genet.37(9), 945–952 (2005).
  • Van der Horst G, Van der Werf SM, Farih-Sips H, Van Bezooijen RL, Lowik CW, Karperien M. Downregulation of Wnt signaling by increased expression of Dickkopf-1 and-2 is a prerequisite for late-stage osteoblast differentiation of KS483 cells. J. Bone Miner. Res.20(10), 1867–1877 (2005).
  • Mukhipadhyay M, Shtrom S, Rodriguez-Esteban C et al. Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev. Cell1(3), 423–434 (2001).
  • Morvan F, Boulukos K, Clément-Lacroix P et al. Deletion of a single allele of the Dkk-1 gene leads to an increase in bone formation and bone mass. J. Bone Miner. Res.21(6), 934–945 (2006).
  • Li J, Sarosi I, Cattley RC et al. Dkk-1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone39(4), 754–766 (2006).
  • MacDonald BT, Joiner DM, Oyserman SM et al. Bone mass is inversely proportional to Dkk-1 levels in mice. Bone41(3), 331–339 (2007).
  • Wang FS, Ko JY, Lin CL, Wu HL, Ke HJ, Tai PJ. Knocking down dickkopf-1 alleviates estrogen deficiency induction of bone loss. A histomorphological study in ovariectomized rats. Bone40(2), 485–492 (2007).
  • Glantsching H, Hampton R, Wei N et al. Fully human anti-DKK-1 antibodies increase bone formation and resolve osteopenia in mouse models of estrogen-deficiency induced bone loss. Presented at: 30th Annual meeting of the American Society of Bone and Mineral Research. Montreal, Quebec, Canada, 12–16 September 2008.
  • Wang FS, Ko JY, Yeh DW, Ke HC, Wu HL. Modulation of Dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation, and bone mass loss. Endocrinology149(4), 1793–1801 (2008).
  • Hoeppner LH, Secreto FJ, Westendorf JJ. Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther. Targets13(4), 485–496 (2009).
  • Giuliani N, Morandi F, Tagliaferri S et al. Production of Wnt inhibitors by myeloma cells: potential effects on canonical Wnt pathway in the bone microenvironment. Cancer Res.67(16), 7665–7674 (2007).
  • Qiang YW, Chen Y, Stephens O et al. Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood112(1), 96–207 (2008).
  • Diarra D, Stolina M, Polzer K et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med.13(2), 156–163 (2007).
  • Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD Jr. Antibody-based inhibition of DKK-1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood109(5), 2106–2111 (2007).
  • Heath DJ, Chantry AD, Buckle CH et al. Inhibiting Dickkopf-1 (Dkk-1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J. Bone Miner. Res.24(3), 425–436 (2009).
  • Kawano Y, Kypta R. Secreted antagonists of the Wnt signaling pathway. J. Cell Sci.116(Pt 13), 2627–2634 (2003).
  • Bodine PV, Billiard J, Moran RA et al. The Wnt antagonist secreted frizzled-related protein-1 controls osteoblast and osteocyte apoptosis. Cell. Biochem.96(6), 1212–1230 (2005).
  • Wang FS, Lin CL, Chen YJ et al. Secreted frizzled-related protein 1 modulates glucocorticoid attenuation of osteogenic activities and bone mass. Endocrinology146(5), 2415–2423 (2005).
  • Bodine PV, Zhao W, Kharode YP et al. The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice. Mol. Endocrinol.18(5), 1222–1237 (2004).
  • Bodine PV, Seestaller-Wehr L, Kharode YP, Bex FJ, Komm BS. Bone anabolic effects of parathyroid hormone are blunted by deletion of the Wnt antagonist secreted frizzled-related protein-1. J. Cell Physiol.210(2), 352–357 (2007).
  • Lories RJ, Peeters J, Bakker A et al. Articular cartilage and biomechanical properties of the long bones in Frzb-knockout mice. Arthritis Rheum.56(12), 4095–4103 (2007).
  • Bodine PV, Stauffer B, Ponce-de-Leon H et al. A small molecule inhibitor of the Wnt antagonist secreted frizzled-related protein-1 stimulates bone formation. Bone44(6), 1063–1068 (2009).
  • Gopalsamy A, Shi M, Stauffer B et al. Identification of diarylsulfone sulfonamides as secreted frizzled related protein-1 (sFRP-1) inhibitors. J. Med. Chem.51(24), 7670–7672 (2008).
  • Shi M, Stauffer B, Bhat R et al. Identification of iminooxothiazolidines as secreted frizzled related protein-1 inhibitors. Bioorg. Med. Chem. Lett.19(22), 6337–6339 (2009).
  • Moore WJ, Kern JC, Bhat R et al. Modulation of Wnt signaling through inhibition of secreted frizzled-related protein 1 (sFRP-1) with N-substituted piperidinyl diphenylsulfonyl sulfonamides. J. Med. Chem.52(1), 105–116 (2009).
  • Li CH, Amar S. Role of secreted frizzled-related protein 1 (SFRP1) in wound healing. J. Dent. Res.85(4), 374–378 (2006).
  • Kumar S, Leontovich A, Coenen MJ, Bahn RS. Gene expression profiling of orbital adipose tissue from patients with Graves’ ophthalmopathy: a potential role for secreted frizzled-related protein-1 in orbital adipogenesis. J. Clin. Endocr. Metab.90(8), 4730–4735 (2005).
  • Wang WH, McNatt LG, Pang IH et al. Increased expression of the WNT antagonist sFRP-1 in glaucoma elevates intraocular pressure. J. Clin. Invest.118(3), 1056–1064 (2008).
  • Harwood AJ. Regulation of GSK-3: a cellular multiprocessor. Cell105(7), 821–824 (2001).
  • Cohen P. The Croonian Lecture. Identification of a protein kinase cascade of major importance in insulin signal transduction. Philos. Trans. R. Soc. Lond. B Biol. Sci.354(1382), 485–495 (1999).
  • Dale TC. Signal transduction by the Wnt family of ligands. Biochem. J.329(2), 209–223 (1998).
  • Zeng X, Tamai K, Doble B et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature438(7069), 873–877 (2005).
  • Kapadia RM, Guntur AR, Reinhold MI, Naski MC. Glycogen synthase kinase 3 controls endochondral bone development: contribution of fibroblast growth factor 18. Dev. Biol.285(2), 496–507 (2005).
  • Yun SI, Yoon HY, Chung YS. Glycogen synthase kinase-3β regulates etoposide-induced apoptosis via Bcl-2 mediated caspase-3 activation in C3H10T1/2 cells. Apoptosis14(6), 771–777 (2009).
  • Hoeflich KP, Luo J, Rubie EA et al. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature406(6791), 86–90 (2000).
  • Wilting I, de Vries F, Thio BM et al. Lithium use and the risk of fractures. Bone40(5), 1252–1258 (2007).
  • Kugimiya F, Kawaguchi H, Ohba S et al. Gsk-3 β controls osteogenesis through regulating Runx2 activity. PLoS ONE2(9), e837 (2007).
  • Vestergaard P, Rejnmark L, Mosekilde L. Reduced relative risk of fractures among users of lithium. Calcif. Tissue Int.77(1), 1–8 (2005).
  • Eren Y, Yyldyz M, Civi Y, Gundodar D, Ozcankaya R. The effects of lithium treatment on bone mineral density of bipolar patients. Neurol. Psychiatr. Brain Res.13(4), 175–180 (2006).
  • Pickart CM. Back to the future with ubiquitin. Cell116(2), 181–190 (2004).
  • Garrett IR, Chen D, Gutierrez G et al. Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. J. Clin. Invest.111(11), 1771–1782 (2003).
  • Terpos E, Heath DJ, Rahemtulla A et al. Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kB ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. Br. J. Haematol.135(5), 688–692 (2006).
  • Heider U, Kaiser M, Müller C et al. Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment. Eur. J. Haematol.77(3), 233–238 (2006).
  • Terpos E, Sezer O, Croucher P, Dimopoulos MA. Myeloma bone disease and proteasome inhibition therapies. Blood110(4), 1098–1104 (2007).
  • Mukherjee S, Raje N, Schoonmaker JA et al. Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J. Clin. Invest.118(2), 491–504 (2008).
  • Giuliani N, Morandi F, Tagliaferri S et al. The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood110(1), 334–338 (2007).
  • von Metzler I, Krebbel H, Hecht M et al. Bortezomib inhibits human osteoclastogenesis. Leukemia21(9), 2025–2034 (2007).
  • Ang E, Pavlos NJ, Rea SL et al. Proteasome inhibitors impair RANKL-induced NF-κB activity in osteoclast-like cells via disruption of p62, TRAF6, CYLD, and IkBα signaling cascades. J. Cell Physiol.220(2), 450–459 (2009).
  • Di Gennaro E, Bruzzese F, Caraglia M, Abruzzese A, Budillon A. Acetylation of proteins as novel target for antitumor therapy: review article. Amino Acids26(4), 435–441 (2004).
  • Qiang YW, Hu B, Chen Y et al. Bortezomib induces osteoblast differentiation via Wnt-independent activation of beta-catenin/TCF signaling. Blood113(18), 4319–4330 (2009).
  • Oyajobi BO, Garrett IR, Gupta A et al. Stimulation of new bone formation by the proteasome inhibitor, bortezomib: implications for myeloma bone disease. Br. J. Haematol.139(3), 434–438 (2007).
  • Pennisi A, Li X, Ling W, Khan S, Zangari M, Yaccoby S. The proteasome inhibitor, bortezomib suppresses primary myeloma and stimulates bone formation in myelomatous bones in vivo. Am. J. Hematol.84(1), 6–14 (2009).
  • Marks PA, Dokmanovic M. Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin Investig. Drugs14(12), 1497–1511 (2005).
  • Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat. Rev.5(9), 769–7845 (2006).
  • Bordonaro M, Lazarova DL, Sartorelli AC. The activation of β-catenin by Wnt signaling mediates the effects of histone deacetylase inhibitors. Exp. Cell Res.313(8), 1652–1666 (2007).
  • Yadav VK, Ryu JH, Suda N et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell135(5), 825–833 (2008).
  • Bliziotes M, Eshleman AJ, Zhang XW, Wiren KM. Neurotransmitter action in osteoblasts: expression of a functional system for serotonin receptor activation and reuptake. Bone29(5), 477–486 (2001).
  • Westbroek I, van der Plas A, de Rooij KE, Klein-Nulend J, Nijweide PJ. Expression of serotonin receptors in bone J. Biol. Chem.276(31), 28961–28968 (2001).
  • Warden SJ, Nelson IR, Fuchs RK, Bliziotes MM, Turner CH. Serotonin (5-hydroxytryptamine) transporter inhibition causes bone loss in adult mice independently of estrogen deficiency. Menopause15(6), 1176–1183 (2008).
  • Haney EM, Warden SJ, Bliziotes MM. Effects of selective serotonin reuptake inhibitors on bone health in adults: time for recommendations about screening, prevention and management? Bone46(1), 13–7 (2010).
  • Yadav VK, Balaji S, Suresh PS et al. Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat. Med.16(3), 308–312 (2010).
  • Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell87(2), 159–170 (1996).
  • Glass DA 2nd, Bialek P, Ahn JD et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell8(5), 751–764 (2005).
  • Olson EN, Schneider MD. Sizing up the heart: development redux in disease. Genes Dev.17(16), 937–956 (2003).
  • van Gijn ME, Daemen MJ, Smits JF, Blankesteijn WM. The Wnt-frizzled cascade in cardiovascular disease. Cardiovasc. Res.55(1), 16–24 (2002).
  • Spencer GJ, Utting JC, Etheridge SL, Arnett TR, Genever PG. Wnt signalling in osteoblasts regulates expression of the receptor activator of NFκB ligand and inhibits osteoclastogenesis in vitro. J. Cell Sci.119(Pt 7), 1283–1296 (2006).
  • Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol. Med.11(2), 76–81 (2005).
  • Frost HM. Bone’s mechanostat: a 2003 update. Anat. Rec. A Discov. Mol. Cell Evol. Biol.275(2), 1081–1101 (2003).
  • Robling AG, Niziolek PJ, Baldridge LA. Mechanical stimulation of bone in vivo reduces osteocyte expression of SOST/sclerostin. Biol. Chem.283(9), 5866–5875 (2008).
  • van Bezooijen RL, Papapoulos SE, Hamdy NAT, Lowik CWGM. Principles of Bone Biology (3rd Edition), Academic Press Inc. CA, USA (2008).
  • Ominsky MS, Vlasseros F, Jolette J et al. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J. Bone Miner. Res.25(5), 948–959 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.