52
Views
34
CrossRef citations to date
0
Altmetric
Review

Molecular processes leading to aberrant androgen receptor signaling and castration resistance in prostate cancer

, &
Pages 753-764 | Published online: 10 Jan 2014

References

  • Huggins C, Hodges CV. Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J. Urol.167(2 Pt 2), 948–951 (2002).
  • Nesbit RM, Baum WC. Endocrine control of prostatic carcinoma; clinical and statistical survey of 1,818 cases. J. Am. Med. Assoc.143(15), 1317–1320 (1950).
  • Moul JW, Wu H, Sun L et al. Early versus delayed hormonal therapy for prostate specific antigen only recurrence of prostate cancer after radical prostatectomy. J. Urol.179(5 Suppl.), S53–S59 (2008).
  • Freedland SJ, Moul JW. Prostate specific antigen recurrence after definitive therapy. J. Urol.177(6), 1985–1991 (2007).
  • Dale W, Hemmerich J, Bylow K, Mohile S, Mullaney M, Stadler WM. Patient anxiety about prostate cancer independently predicts early initiation of androgen deprivation therapy for biochemical cancer recurrence in older men: a prospective cohort study. J. Clin. Oncol.27(10), 1557–1563 (2009).
  • Maroni PD, Crawford ED. The benefits of early androgen blockade. Best Pract. Res. Clin. Endocrinol. Metab.22(2), 317–329 (2008).
  • Messing EM, Manola J, Yao J et al. Immediate versus deferred androgen deprivation treatment in patients with node-positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy. Lancet Oncol.7(6), 472–479 (2006).
  • D’Amico AV, Chen MH, Renshaw AA, Loffredo M, Kantoff PW. Androgen suppression and radiation vs radiation alone for prostate cancer: a randomized trial. JAMA299(3), 289–295 (2008).
  • Eisenberger MA, Blumenstein BA, Crawford ED et al. Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N. Engl. J. Med.339(15), 1036–1042 (1998).
  • Small EJ, Ryan CJ. The case for secondary hormonal therapies in the chemotherapy age. J. Urol.176(6 Pt 2), S66–S71 (2006).
  • Tran C, Ouk S, Clegg NJ et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science324(5928), 787–790 (2009).
  • Attard G, Reid AH, A’Hern R et al. Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J. Clin. Oncol.27(23), 3742–3748 (2009).
  • Attard G, Reid AH, Yap TA et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol.26(28), 4563–4571 (2008).
  • Scher HI, Beer TM, Higano CS et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a Phase 1–2 study. Lancet375(9724), 1437–1446 (2010).
  • Smaletz O, Scher HI. Outcome predictions for patients with metastatic prostate cancer. Semin. Urol. Oncol.20(2), 155–163 (2002).
  • Chen Y, Clegg NJ, Scher HI. Anti-androgens and androgen-depleting therapies in prostate cancer: new agents for an established target. Lancet Oncol.10(10), 981–991 (2009).
  • Knudsen KE, Penning TM. Partners in crime: deregulation of AR activity and androgen synthesis in prostate cancer. Trends Endocrinol. Metab.21(5), 315–324 (2010).
  • Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer1(1), 34–45 (2001).
  • Nacusi LP, Tindall DJ. Androgen receptor abnormalities in castration-recurrent prostate cancer. Expert Rev. Endocrinol. Metab.4(5), 417–422 (2009).
  • Taplin ME, Bubley GJ, Shuster TD et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med.332(21), 1393–1398 (1995).
  • Visakorpi T, Hyytinen E, Koivisto P et al.In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat. Genet.9(4), 401–406 (1995).
  • Chen CD, Welsbie DS, Tran C et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med.10(1), 33–39 (2004).
  • Chmelar R, Buchanan G, Need EF, Tilley W, Greenberg NM. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int. J. Cancer120(4), 719–733 (2007).
  • Xu K, Shimelis H, Linn DE et al. Regulation of androgen receptor transcriptional activity and specificity by RNF6-induced ubiquitination. Cancer Cell15(4), 270–282 (2009).
  • Kaarbo M, Klokk TI, Saatcioglu F. Androgen signaling and its interactions with other signaling pathways in prostate cancer. Bioessays29(12), 1227–1238 (2007).
  • Mostaghel EA, Nelson PS. Intracrine androgen metabolism in prostate cancer progression: mechanisms of castration resistance and therapeutic implications. Best Pract. Res. Clin. Endocrinol. Metab.22(2), 243–258 (2008).
  • Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res.68(13), 5469–5477 (2008).
  • Guo Z, Yang X, Sun F et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res.69(6), 2305–2313 (2009).
  • Hu R, Dunn TA, Wei S et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res.69(1), 16–22 (2009).
  • Chang CS, Kokontis J, Liao ST. Molecular cloning of human and rat complementary DNA encoding androgen receptors. Science240(4850), 324–326 (1988).
  • Lubahn DB, Joseph DR, Sullivan PM, Willard HF, French FS, Wilson EM. Cloning of human androgen receptor complementary DNA and localization to the X chromosome. Science240(4850), 327–330 (1988).
  • Trapman J, Klaassen P, Kuiper GG et al. Cloning, structure and expression of a cDNA encoding the human androgen receptor. Biochem. Biophys. Res. Commun.153(1), 241–248 (1988).
  • Gelmann EP. Molecular biology of the androgen receptor. J. Clin. Oncol.20(13), 3001–3015 (2002).
  • Simental JA, Sar M, Lane MV, French FS, Wilson EM. Transcriptional activation and nuclear targeting signals of the human androgen receptor. J. Biol. Chem.266(1), 510–518 (1991).
  • Tanner T, Claessens F, Haelens A. The hinge region of the androgen receptor plays a role in proteasome-mediated transcriptional activation. Ann. NY Acad. Sci.1030, 587–592 (2004).
  • Saporita AJ, Zhang Q, Navai N et al. Identification and characterization of a ligand-regulated nuclear export signal in androgen receptor. J. Biol. Chem.278(43), 41998–42005 (2003).
  • Zhou ZX, Sar M, Simental JA, Lane MV, Wilson EM. A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by NH2-terminal and carboxyl-terminal sequences. J. Biol. Chem.269(18), 13115–13123 (1994).
  • Zhou ZX, Kemppainen JA, Wilson EM. Identification of three proline-directed phosphorylation sites in the human androgen receptor. Mol. Endocrinol.9(5), 605–615 (1995).
  • Li J, Al-Azzawi F. Mechanism of androgen receptor action. Maturitas63(2), 142–148 (2009).
  • Heinlein CA, Chang C. Androgen receptor (AR) coregulators: an overview. Endocr. Rev.23(2), 175–200 (2002).
  • Heemers HV, Tindall DJ. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev.28(7), 778–808 (2007).
  • Koivisto P, Kononen J, Palmberg C et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res.57(2), 314–319 (1997).
  • Attard G, Swennenhuis JF, Olmos D et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res.69(7), 2912–2918 (2009).
  • Leversha MA, Han J, Asgari Z et al. Fluorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate cancer. Clin. Cancer Res.15(6), 2091–2097 (2009).
  • Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res.61(9), 3550–3555 (2001).
  • Ford OH 3rd, Gregory CW, Kim D, Smitherman AB, Mohler JL. Androgen receptor gene amplification and protein expression in recurrent prostate cancer. J. Urol.170(5), 1817–1821 (2003).
  • Edwards J, Krishna NS, Grigor KM, Bartlett JM. Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br. J. Cancer89(3), 552–556 (2003).
  • Moul JW, Srivastava S, McLeod DG. Molecular implications of the antiandrogen withdrawal syndrome. Semin. Urol.13(2), 157–163 (1995).
  • Knudsen KE, Scher HI. Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer. Clin. Cancer Res.15(15), 4792–4798 (2009).
  • Lassi K, Dawson NA. Update on castrate-resistant prostate cancer: 2010. Curr. Opin. Oncol.22(3), 263–267 (2010).
  • Vasaitis T, Belosay A, Schayowitz A et al. Androgen receptor inactivation contributes to antitumor efficacy of 17{α}-hydroxylase/17,20-lyase inhibitor 3β-hydroxy-17-(1H-benzimidazole-1-yl)androsta-5,16-diene in prostate cancer. Mol. Cancer Ther.7(8), 2348–2357 (2008).
  • Handratta VD, Vasaitis TS, Njar VC et al. Novel C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: synthesis, in vitro biological activity, pharmacokinetics, and antitumor activity in the LAPC4 human prostate cancer xenograft model. J. Med. Chem.48(8), 2972–2984 (2005).
  • Donovan MJ, Hamann S, Clayton M et al. Systems pathology approach for the prediction of prostate cancer progression after radical prostatectomy. J. Clin. Oncol.26(24), 3923–3929 (2008).
  • Cordon-Cardo C, Kotsianti A, Verbel DA et al. Improved prediction of prostate cancer recurrence through systems pathology. J. Clin. Invest.117(7), 1876–1883 (2007).
  • Palmberg C, Koivisto P, Kakkola L, Tammela TL, Kallioniemi OP, Visakorpi T. Androgen receptor gene amplification at primary progression predicts response to combined androgen blockade as second line therapy for advanced prostate cancer. J. Urol.164(6), 1992–1995 (2000).
  • Edwards J, Bartlett JM. The androgen receptor and signal-transduction pathways in hormone-refractory prostate cancer. Part 2: androgen-receptor cofactors and bypass pathways. BJU Int.95(9), 1327–1335 (2005).
  • Niu Y, Altuwaijri S, Lai KP et al. Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proc. Natl Acad. Sci. USA105(34), 12182–12187 (2008).
  • Culig Z, Stober J, Gast A et al. Activation of two mutant androgen receptors from human prostatic carcinoma by adrenal androgens and metabolic derivatives of testosterone. Cancer Detect. Prev.20(1), 68–75 (1996).
  • Culig Z, Hobisch A, Cronauer MV et al. Mutant androgen receptor detected in an advanced-stage prostatic carcinoma is activated by adrenal androgens and progesterone. Mol. Endocrinol.7(12), 1541–1550 (1993).
  • Taplin ME, Rajeshkumar B, Halabi S et al. Androgen receptor mutations in androgen-independent prostate cancer: Cancer and Leukemia Group B Study 9663. J. Clin. Oncol.21(14), 2673–2678 (2003).
  • Marcelli M, Ittmann M, Mariani S et al. Androgen receptor mutations in prostate cancer. Cancer Res.60(4), 944–949 (2000).
  • Suzuki H, Sato N, Watabe Y, Masai M, Seino S, Shimazaki J. Androgen receptor gene mutations in human prostate cancer. J. Steroid Biochem. Mol. Biol.46(6), 759–765 (1993).
  • Wallen MJ, Linja M, Kaartinen K, Schleutker J, Visakorpi T. Androgen receptor gene mutations in hormone-refractory prostate cancer. J. Pathol.189(4), 559–563 (1999).
  • Taplin ME, Bubley GJ, Ko YJ et al. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res.59(11), 2511–2515 (1999).
  • Gottlieb B, Beitel LK, Wu JH, Trifiro M. The androgen receptor gene mutations database (ARDB): 2004 update. Hum. Mutat.23(6), 527–533 (2004).
  • Russell PJ, Bennett S, Stricker P. Growth factor involvement in progression of prostate cancer. Clin. Chem.44(4), 705–723 (1998).
  • Montgomery JS, Price DK, Figg WD. The androgen receptor gene and its influence on the development and progression of prostate cancer. J. Pathol.195(2), 138–146 (2001).
  • Matias PM, Donner P, Coelho R et al. Structural evidence for ligand specificity in the binding domain of the human androgen receptor. Implications for pathogenic gene mutations. J. Biol. Chem.275(34), 26164–26171 (2000).
  • Sack JS, Kish KF, Wang C et al. Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc. Natl Acad. Sci. USA98(9), 4904–4909 (2001).
  • Tilley WD, Buchanan G, Hickey TE, Bentel JM. Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin. Cancer Res.2(2), 277–285 (1996).
  • Shi XB, Ma AH, Xia L, Kung HJ, de Vere White RW. Functional analysis of 44 mutant androgen receptors from human prostate cancer. Cancer Res.62(5), 1496–1502 (2002).
  • Ceraline J, Cruchant MD, Erdmann E et al. Constitutive activation of the androgen receptor by a point mutation in the hinge region: a new mechanism for androgen-independent growth in prostate cancer. Int. J. Cancer108(1), 152–157 (2004).
  • Jenster G, van der Korput HA, van Vroonhoven C, van der Kwast TH, Trapman J, Brinkmann AO. Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol. Endocrinol.5(10), 1396–1404 (1991).
  • Gregory CW, He B, Johnson RT et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res.61(11), 4315–4319 (2001).
  • Halkidou K, Gnanapragasam VJ, Mehta PB et al. Expression of Tip60, an androgen receptor coactivator, and its role in prostate cancer development. Oncogene22(16), 2466–2477 (2003).
  • Agoulnik IU, Vaid A, Nakka M et al. Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res.66(21), 10594–10602 (2006).
  • Heemers HV, Regan KM, Schmidt LJ, Anderson SK, Ballman KV, Tindall DJ. Androgen modulation of coregulator expression in prostate cancer cells. Mol. Endocrinol.23(4), 572–583 (2009).
  • Gregory CW, Fei X, Ponguta LA et al. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J. Biol. Chem.279(8), 7119–7130 (2004).
  • Ueda T, Mawji NR, Bruchovsky N, Sadar MD. Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J. Biol. Chem.277(41), 38087–38094 (2002).
  • Hobisch A, Eder IE, Putz T et al. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res.58(20), 4640–4645 (1998).
  • Krueckl SL, Sikes RA, Edlund NM et al. Increased insulin-like growth factor I receptor expression and signaling are components of androgen-independent progression in a lineage-derived prostate cancer progression model. Cancer Res.64(23), 8620–8629 (2004).
  • George DJ, Halabi S, Shepard TF et al. The prognostic significance of plasma interleukin-6 levels in patients with metastatic hormone-refractory prostate cancer: results from cancer and leukemia group B 9480. Clin. Cancer Res.11(5), 1815–1820 (2005).
  • Di Lorenzo G, Tortora G, D’Armiento FP et al. Expression of epidermal growth factor receptor correlates with disease relapse and progression to androgen-independence in human prostate cancer. Clin. Cancer Res.8(11), 3438–3444 (2002).
  • Gioeli D, Ficarro SB, Kwiek JJ et al. Androgen receptor phosphorylation. Regulation and identification of the phosphorylation sites. J. Biol. Chem.277(32), 29304–29314 (2002).
  • Craft N, Shostak Y, Carey M, Sawyers CL. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat. Med.5(3), 280–285 (1999).
  • Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C. From HER2/neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc. Natl Acad. Sci. USA96(10), 5458–5463 (1999).
  • Ittmann MM. Chromosome 10 alterations in prostate adenocarcinoma (review). Oncol. Rep.5(6), 1329–1335 (1998).
  • Graff JR, Konicek BW, McNulty AM et al.Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. J. Biol. Chem.275(32), 24500–24505 (2000).
  • Lin HK, Yeh S, Kang HY, Chang C. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc. Natl Acad. Sci. USA98(13), 7200–7205 (2001).
  • Wen Y, Hu MC, Makino K et al. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res.60(24), 6841–6845 (2000).
  • Bakin RE, Gioeli D, Sikes RA, Bissonette EA, Weber MJ. Constitutive activation of the Ras/mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells. Cancer Res.63(8), 1981–1989 (2003).
  • McCall P, Gemmell LK, Mukherjee R, Bartlett JM, Edwards J. Phosphorylation of the androgen receptor is associated with reduced survival in hormone-refractory prostate cancer patients. Br. J. Cancer98(6), 1094–1101 (2008).
  • Guo Z, Dai B, Jiang T et al. Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell10(4), 309–319 (2006).
  • Kraus S, Gioeli D, Vomastek T, Gordon V, Weber MJ. Receptor for activated C kinase 1 (RACK1) and Src regulate the tyrosine phosphorylation and function of the androgen receptor. Cancer Res.66(22), 11047–11054 (2006).
  • Mahajan NP, Liu Y, Majumder S et al. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc. Natl Acad. Sci. USA104(20), 8438–8443 (2007).
  • Mahajan K, Mahajan NP. Shepherding AKT and androgen receptor by Ack1 tyrosine kinase. J. Cell Physiol. (2010).
  • Tatarov O, Mitchell TJ, Seywright M, Leung HY, Brunton VG, Edwards J. SRC family kinase activity is up-regulated in hormone-refractory prostate cancer. Clin. Cancer Res.15(10), 3540–3549 (2009).
  • Attar RM, Takimoto CH, Gottardis MM. Castration-resistant prostate cancer: locking up the molecular escape routes. Clin. Cancer Res.15(10), 3251–3255 (2009).
  • Chi KN, Bjartell A, Dearnaley D et al. Castration-resistant prostate cancer: from new pathophysiology to new treatment targets. Eur. Urol.56(4), 594–605 (2009).
  • Pienta KJ, Bradley D. Mechanisms underlying the development of androgen-independent prostate cancer. Clin. Cancer Res.12(6), 1665–1671 (2006).
  • Labrie C, Simard J, Zhao HF, Belanger A, Pelletier G, Labrie F. Stimulation of androgen-dependent gene expression by the adrenal precursors dehydroepiandrosterone and androstenedione in the rat ventral prostate. Endocrinology124(6), 2745–2754 (1989).
  • Labrie F. Intracrinology. Mol. Cell Endocrinol.78(3), C113–C118 (1991).
  • Dillard PR, Lin MF, Khan SA. Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Mol. Cell. Endocrinol.295(1–2), 115–120 (2008).
  • Locke JA, Guns ES, Lubik AA et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res.68(15), 6407–6415 (2008).
  • Geller J, Albert JD, Nachtsheim DA, Loza D. Comparison of prostatic cancer tissue dihydrotestosterone levels at the time of relapse following orchiectomy or estrogen therapy. J. Urol.132(4), 693–696 (1984).
  • Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin. Cancer Res.11(13), 4653–4657 (2005).
  • Mohler JL, Gregory CW, Ford OH 3rd et al. The androgen axis in recurrent prostate cancer. Clin. Cancer Res.10(2), 440–448 (2004).
  • Nishiyama T, Ikarashi T, Hashimoto Y, Wako K, Takahashi K. The change in the dihydrotestosterone level in the prostate before and after androgen deprivation therapy in connection with prostate cancer aggressiveness using the Gleason score. J. Urol.178(4 Pt 1), 1282–1288 (2007).
  • Nishiyama T, Hashimoto Y, Takahashi K. The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer. Clin. Cancer Res.10(21), 7121–7126 (2004).
  • Stanbrough M, Bubley GJ, Ross K et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res.66(5), 2815–2825 (2006).
  • Montgomery RB, Mostaghel EA, Vessella R et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res.68(11), 4447–4454 (2008).
  • Hofland J, van Weerden WM, Dits NF et al. Evidence of limited contributions for intratumoral steroidogenesis in prostate cancer. Cancer Res.70(3), 1256–1264 (2010).
  • Mostaghel EA, Montgomery B, Nelson PS. Castration-resistant prostate cancer: targeting androgen metabolic pathways in recurrent disease. Urol. Oncol.27(3), 251–257 (2009).
  • Miller WL, Auchus RJ, Geller DH. The regulation of 17,20 lyase activity. Steroids62(1), 133–142 (1997).
  • Ang JE, Olmos D, de Bono JS. CYP17 blockade by abiraterone: further evidence for frequent continued hormone-dependence in castration-resistant prostate cancer. Br. J. Cancer100(5), 671–675 (2009).
  • Auchus RJ. Overview of dehydroepiandrosterone biosynthesis. Semin. Reprod. Med22(4), 281–288 (2004).
  • Danila DC, Morris MJ, de Bono JS et al.Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients with docetaxel-treated castration-resistant prostate cancer. J. Clin. Oncol.28(9), 1496–1501 (2010).
  • Chen Y, Sawyers CL, Scher HI. Targeting the androgen receptor pathway in prostate cancer. Curr. Opin. Pharmacol.8(4), 440–448 (2008).
  • Debes JD, Tindall DJ. Mechanisms of androgen-refractory prostate cancer. N. Engl. J. Med.351(15), 1488–1490 (2004).
  • Bonkhoff H, Berges R. From pathogenesis to prevention of castration resistant prostate cancer. Prostate70(1), 100–112 (2010).
  • Fixemer T, Remberger K, Bonkhoff H. Apoptosis resistance of neuroendocrine phenotypes in prostatic adenocarcinoma. Prostate53(2), 118–123 (2002).
  • Bonkhoff H. Neuroendocrine differentiation in human prostate cancer. Morphogenesis, proliferation and androgen receptor status. Ann. Oncol.12(Suppl. 2), S141–S144 (2001).
  • Mitsiades CS, Bogdanos J, Karamanolakis D, Milathianakis C, Dimopoulos T, Koutsilieris M. Randomized controlled clinical trial of a combination of somatostatin analog and dexamethasone plus zoledronate vs. zoledronate in patients with androgen ablation-refractory prostate cancer. Anticancer Res.26(5B), 3693–3700 (2006).
  • Koutsilieris M, Mitsiades CS, Bogdanos J et al. Combination of somatostatin analog, dexamethasone, and standard androgen ablation therapy in stage D3 prostate cancer patients with bone metastases. Clin. Cancer Res.10(13), 4398–4405 (2004).
  • Koutsilieris M, Mitsiades C, Dimopoulos T, Ioannidis A, Ntounis A, Lambou T. A combination therapy of dexamethasone and somatostatin analog reintroduces objective clinical responses to LHRH analog in androgen ablation-refractory prostate cancer patients. J. Clin. Endocrinol. Metab.86(12), 5729–5736 (2001).
  • Colombel M, Symmans F, Gil S et al. Detection of the apoptosis-suppressing oncoprotein bc1–2 in hormone-refractory human prostate cancers.Am. J. Pathol.143(2), 390–400 (1993).
  • McDonnell TJ, Troncoso P, Brisbay SM et al. Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res.52(24), 6940–6944 (1992).
  • Furuya Y, Krajewski S, Epstein JI, Reed JC, Isaacs JT. Expression of bcl-2 and the progression of human and rodent prostatic cancers. Clin. Cancer Res.2(2), 389–398 (1996).
  • Gleave M, Tolcher A, Miyake H et al. Progression to androgen independence is delayed by adjuvant treatment with antisense Bcl-2 oligodeoxynucleotides after castration in the LNCaP prostate tumor model. Clin. Cancer Res.5(10), 2891–2898 (1999).
  • De Marzo AM, Platz EA, Sutcliffe S et al. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer7(4), 256–269 (2007).
  • Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature464(7286), 302–305 (2010).
  • Nadiminty N, Lou W, Sun M et al. Aberrant activation of the androgen receptor by NF-κB2/p52 in prostate cancer cells. Cancer Res.70(8), 3309–3319 (2010).
  • Khor LY, Bae K, Pollack A et al. COX-2 expression predicts prostate-cancer outcome: analysis of data from the RTOG 92–02 trial. Lancet Oncol.8(10), 912–920 (2007).
  • Di Silverio F, Sciarra A, Gentile V. Etoricoxib and intermittent androgen deprivation therapy in patients with biochemical progression after radical prostatectomy. Urology71(5), 947–951 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.