39
Views
1
CrossRef citations to date
0
Altmetric
Review

Novel insights into FOXOlogy: FOXOs and their putative role in thyroid carcinogenesis

, &
Pages 63-69 | Published online: 10 Jan 2014

References

  • Fagin JA. Minireview: branded from the start-distinct oncogenic initiating events may determine tumor fate in the thyroid. Mol. Endocrinol.16(5), 903–911 (2002).
  • Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem.273(22), 13375–13378 (1998).
  • Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol.22(14), 2954–2963 (2004).
  • Dahia PL, Marsh DJ, Zheng Z et al. Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res.57(21), 4710–4713 (1997).
  • Zhou XP, Waite KA, Pilarski R et al. Germline PTEN promoter mutations and deletions in Cowden/Bannayan-Riley-Ruvalcaba syndrome result in aberrant PTEN protein and dysregulation of the phosphoinositol-3-kinase/Akt pathway. Am. J. Hum. Genet.73(2), 404–411 (2003).
  • Eng C. Role of PTEN, a lipid phosphatase upstream effector of protein kinase B, in epithelial thyroid carcinogenesis. Ann. NY Acad. Sci.968, 213–221 (2002).
  • Bruni P, Boccia A, Baldassarre G et al. PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that PTEN-growth suppressing activity in thyroid cancer cells mediated by p27KIP1. Oncogene19(28), 3146–3155 (2000).
  • Frisk T, Foukakis T, Dwight T et al. Silencing of the PTEN tumor-suppressor gene in anaplastic thyroid cancer. Genes Chromosomes Cancer35(1), 74–80 (2002).
  • Gimm O, Perren A, Weng LP et al. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. Am. J. Pathol.156(5), 1693–1700 (2000).
  • Shinohara M, Chung YJ, Saji M, Ringel MD. Akt in thyroid tumorigenesis and progression. Endocrinology148(3), 942–947 (2007).
  • Ringel MD, Hayre N, Saito J et al. Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res.61(16), 6105–6111 (2001).
  • Vasko V, Saji M, Hardy E et al. Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J. Med. Genet.41(3), 161–170 (2004).
  • Garcia-Rostan G, Costa AM, Pereira-Castro I et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res.65(22), 10199–10207 (2005).
  • Wu G, Mambo E, Guo Z et al. Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors. J. Clin. Endocrinol. Metab90(8), 4688–4693 (2005).
  • Song Y, Driessens N, Costa M et al. Roles of hydrogen peroxide in thyroid physiology and disease. J. Clin. Endocrinol. Metab.92(10), 3764–3773 (2007).
  • De Deken X, Wang D, Dumont JE, Miot F. Characterization of ThOX proteins as components of the thyroid H(2)O(2)-generating system. Exp. Cell Res.273(2), 187–196 (2002).
  • Schmutzler C, Mentrup B, Schomburg L, Hoang-Vu C, Herzog V, Kohrle J. Selenoproteins of the thyroid gland: expression, localization and possible function of glutathione peroxidase 3. Biol. Chem.388(10), 1053–1059 (2007).
  • Krohn K, Maier J, Paschke R. Mechanisms of disease: hydrogen peroxide, DNA damage and mutagenesis in the development of thyroid tumors. Nat. Clin. Pract. Endocrinol. Metab.3(10), 713–720 (2007).
  • Driessens N, Versteyhe S, Ghaddhab C et al. Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ. Endocr. Relat. Cancer16(3), 845–856 (2009).
  • Maier J, van Steeg H, van Oostrom C, Karger S, Paschke R, Krohn K. Deoxyribonucleic acid damage and spontaneous mutagenesis in the thyroid gland of rats and mice. Endocrinology147(7), 3391–3397 (2006).
  • Krause K, Karger S, Schierhorn A, Poncin S, Many MC, Fuhrer D. Proteomic profiling of cold thyroid nodules. Endocrinology148(4), 1754–1763 (2007).
  • Weidinger C, Krause K, Klagge A, Karger S, Fuhrer D. Forkhead box-O transcription factor: critical conductors of cancer’s fate. Endocr. Relat. Cancer15(4), 917–929 (2008).
  • Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene24(50), 7410–7425 (2005).
  • Boura E, Silhan J, Herman P et al. Both the N-terminal loop and wing W2 of the forkhead domain of transcription factor FOXO4 are important for DNA binding. J. Biol. Chem.282(11), 8265–8275 (2007).
  • Dijkers PF, Medema RH, Pals C et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27(KIP1). Mol. Cell Biol.20(24), 9138–9148 (2000).
  • Medema RH, Kops GJ, Bos JL, Burgering BM. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27KIP1. Nature404(6779), 782–787 (2000).
  • Kops GJ, Medema RH, Glassford J et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol. Cell Biol.22(7), 2025–2036 (2002).
  • Ramaswamy S, Nakamura N, Sansal I, Bergeron L, Sellers WR. A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell2(1), 81–91 (2002).
  • Smith EJ, Leone G, DeGregori J, Jakoi L, Nevins JR. The accumulation of an E2F-p130 transcriptional repressor distinguishes a G0 cell state from a G1 cell state. Mol. Cell Biol.16(12), 6965–6976 (1996).
  • Brunet A, Sweeney LB, Sturgill JF et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science303(5666), 2011–2015 (2004).
  • Tran H, Brunet A, Grenier JM et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science296(5567), 530–534 (2002).
  • Furukawa-Hibi Y, Yoshida-Araki K, Ohta T, Ikeda K, Motoyama N. FOXO forkhead transcription factors induce G(2)–M checkpoint in response to oxidative stress. J. Biol. Chem.277(30), 26729–26732 (2002).
  • Fu Z, Tindall DJ. FOXOs, cancer and regulation of apoptosis. Oncogene27(16), 2312–2319 (2008).
  • Li M, Chiu JF, Mossman BT, Fukagawa NK. Down-regulation of manganese-superoxide dismutase through phosphorylation of FOXO3a by Akt in explanted vascular smooth muscle cells from old rats. J. Biol. Chem.281(52), 40429–40439 (2006).
  • Kops GJ, Dansen TB, Polderman PE et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature419(6904), 316–321 (2002).
  • Venkatesan B, Mahimainathan L, Das F, Ghosh-Choudhury N, Ghosh CG. Downregulation of catalase by reactive oxygen species via PI3 kinase/Akt signaling in mesangial cells. J. Cell Physiol.211(2), 457–467 (2007).
  • van der Horst A, Burgering BM. Stressing the role of FOXO proteins in lifespan and disease. Nat.Rev.Mol. Cell Biol.8(6), 440–450 (2007).
  • Paik JH, Kollipara R, Chu G et al. FOXOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell128(2), 309–323 (2007).
  • van der Heide LP, Hoekman MF, Smidt MP. The ins and outs of FOXO shuttling: mechanisms of FOXO translocation and transcriptional regulation. Biochem. J.380(Pt 2), 297–309 (2004).
  • Huang H, Regan KM, Wang F et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc. Natl Acad. Sci. USA102(5), 1649–1654 (2005).
  • Yan L, Lavin VA, Moser LR, Cui Q, Kanies C, Yang E. PP2A regulates the pro-apoptotic activity of FOXO1. J. Biol. Chem.283(12), 7411–7420 (2008).
  • Motta MC, Divecha N, Lemieux M et al. Mammalian SIRT1 represses forkhead transcription factors. Cell116(4), 551–563 (2004).
  • Brent MM, Anand R, Marmorstein R. Structural basis for DNA recognition by FOXO1 and its regulation by posttranslational modification. Structure16(9), 1407–1416 (2008).
  • Emerling BM, Weinberg F, Liu JL, Mak TW, Chandel NS. PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a). Proc. Natl Acad. Sci. USA105(7), 2622–2627 (2008).
  • Jung HS, Kim DW, Jo YS et al. Regulation of protein kinase B tyrosine phosphorylation by thyroid-specific oncogenic RET/PTC kinases. Mol. Endocrinol.19(11), 2748–2759 (2005).
  • Dong S, Kang S, Gu TL et al. 14-13-3 integrates prosurvival signals mediated by the Akt and MAPK pathways in ZNF198-FGFR1-transformed hematopoietic cells. Blood110(1), 360–369 (2007).
  • Kikuno N, Shiina H, Urakami S et al. Knockdown of astrocyte-elevated gene-1 inhibits prostate cancer progression through upregulation of FOXO3a activity. Oncogene26(55), 7647–7655 (2007).
  • Hu MC, Lee DF, Xia W et al. IkB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell117(2), 225–237 (2004).
  • Yang W, Dolloff NG, El Deiry WS. ERK and MDM2 prey on FOXO3a. Nat. Cell Biol.10(2), 125–126 (2008).
  • Goto T, Takano M, Albergaria A et al. Mechanism and functional consequences of loss of FOXO1 expression in endometrioid endometrial cancer cells. Oncogene27(1), 9–19 (2008).
  • Karger S, Weidinger C, Krause K et al. FOXO3a: a novel player in thyroid carcinogenesis?. Endocr. Relat. Cancer16(1), 189–199 (2009).
  • Kim CS, Vasko VV, Kato Y et al. Akt activation promotes metastasis in a mouse model of follicular thyroid carcinoma. Endocrinology146(10), 4456–4463 (2005).
  • Santarpia L, El Naggar AK, Cote GJ, Myers JN, Sherman SI. Phosphatidylinositol 3-kinase/Akt and Ras/Raf-mitogen-activated protein kinase pathway mutations in anaplastic thyroid cancer. J. Clin. Endocrinol. Metab.93(1), 278–284 (2008).
  • Wang Y, Hou P, Yu H et al. High prevalence and mutual exclusivity of genetic alterations in the PI3K/Akt pathway in thyroid tumors. J. Clin. Endocrinol. Metab.92(6), 2387–2390 (2007).
  • Guigon CJ, Zhao L, Willingham MC, Cheng SY. PTEN deficiency accelerates tumour progression in a mouse model of thyroid cancer. Oncogene28(4), 509–517 (2009).
  • Dong XY, Chen C, Sun X et al. FOXO1A is a candidate for the 13q14 tumor suppressor gene inhibiting androgen receptor signaling in prostate cancer. Cancer Res.66(14), 6998–7006 (2006).
  • Jin S, Pang RP, Shen JN, Huang G, Wang J, Zhou JG. Grifolin induces apoptosis via inhibition of PI3K/Akt signalling pathway in human osteosarcoma cells. Apoptosis12(7), 1317–1326 (2007).
  • Jin S, Shen JN, Wang J, Huang G, Zhou JG. Oridonin induced apoptosis through Akt and MAPKs signaling pathways in human osteosarcoma cells. Cancer Biol. Ther.6(2), 261–268 (2007).
  • Sunters A, Fernandez dM, Stahl M et al. FOXO3a transcriptional regulation of BIM controls apoptosis in paclitaxel-treated breast cancer cell lines. J. Biol. Chem.278(50), 49795–49805 (2003).
  • Yang JY, Hung MC. A new fork for clinical application: targeting forkhead transcription factors in cancer. Clin. Cancer Res.15(3), 752–757 (2009).
  • Fernandez dM, Essafi A, Soeiro I et al. FOXO3a and BCR-ABL regulate cyclin D2 transcription through a STAT5/BCL6-dependent mechanism. Mol. Cell Biol.24(22), 10058–10071 (2004).
  • Essafi A, Fernandez de M, Hassen YA et al. Direct transcriptional regulation of BIM by FOXO3a mediates STI571-induced apoptosis in BCR-ABL-expressing cells. Oncogene24(14), 2317–2329 (2005).
  • Alexia C, Bras M, Fallot G et al. Pleiotropic effects of PI-3’ kinase/Akt signaling in human hepatoma cell proliferation and drug-induced apoptosis. Ann. NY Acad. Sci.1090, 1–17 (2006).
  • Sunters A, Madureira PA, Pomeranz KM et al. Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res.66(1), 212–220 (2006).
  • Kau TR, Schroeder F, Ramaswamy S et al. A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell4(6), 463–476 (2003).
  • Frescas D, Valenti L, Accili D. Nuclear trapping of the forkhead transcription factor FOXO1 via Sirt-dependent deacetylation promotes expression of glucogenetic genes. J. Biol. Chem.280(21), 20589–20595 (2005).
  • Weng SC, Kashida Y, Kulp SK et al. Sensitizing estrogen receptor-negative breast cancer cells to tamoxifen with OSU-03012, a novel celecoxib-derived phosphoinositide-dependent protein kinase-1/Akt signaling inhibitor. Mol. Cancer Ther.7(4), 800–808 (2008).
  • Real PJ, Benito A, Cuevas J et al. Blockade of epidermal growth factor receptors chemosensitizes breast cancer cells through up-regulation of Bnip3L. Cancer Res.65(18), 8151–8157 (2005).
  • Yang JY, Xia W, Hu MC. Ionizing radiation activates expression of FOXO3a, Fas ligand, and BIM, and induces cell apoptosis. Int. J. Oncol.29(3), 643–648 (2006).
  • Tsai WB, Chung YM, Takahashi Y, Xu Z, Hu MC. Functional interaction between FOXO3a and ATM regulates DNA damage response. Nat. Cell Biol.10(4), 460–467 (2008).
  • Matsumoto M, Han S, Kitamura T, Accili D. Dual role of transcription factor FOXO1 in controlling hepatic insulin sensitivity and lipid metabolism. J. Clin. Invest.116(9), 2464–2472 (2006).
  • Kogai T, Sajid-Crockett S, Newmarch LS, Liu YY, Brent GA. Phosphoinositide-3-kinase inhibition induces sodium/iodide symporter expression in rat thyroid cells and human papillary thyroid cancer cells. J. Endocrinol.199(2), 243–252 (2008).
  • Liu D, Hou P, Liu Z, Wu G, Xing M. Genetic alterations in the phosphoinositide 3-kinase/Akt signaling pathway confer sensitivity of thyroid cancer cells to therapeutic targeting of Akt and mammalian target of rapamycin. Cancer Res.69(18), 7311–7319 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.