4,599
Views
58
CrossRef citations to date
0
Altmetric
Review

Role of the growth hormone–IGF-1 axis in cancer

, &
Pages 71-84 | Published online: 10 Jan 2014

References

  • Nilsson A, Carlsson B, Isgaard J, Isaksson OG, Rymo L. Regulation by GH of insulin-like growth factor-I mRNA expression in rat epiphyseal growth plate as studied with in situ hybridization. J. Endocrinol.125(1), 67–74 (1990).
  • Yakar S, Liu JL, Stannard B et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc. Natl Acad. Sci. USA96(13), 7324–7329 (1999).
  • Jenkins PJ, Mukherjee A, Shalet SM. Does growth hormone cause cancer? Clin. Endocrinol. (Oxf.)64(2), 115–121 (2006).
  • Samani AA, Yakar S, LeRoith D, Brodt P. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr. Rev.28(1), 20–47 (2007).
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell100(1), 57–70 (2000).
  • Harrela M, Koistinen H, Kaprio J et al. Genetic and environmental components of interindividual variation in circulating levels of IGF-I, IGF-II, IGFBP-1, and IGFBP-3. J. Clin. Invest.98(11), 2612–2615 (1996).
  • Pollak M. The question of a link between insulin-like growth factor physiology and neoplasia. Growth Horm. IGF Res.10(Suppl. B), S21–S24 (2000).
  • Laban C, Bustin SA, Jenkins PJ. The GH–IGF-I axis and breast cancer. Trends Endocrinol. Metab.14(1), 28–34 (2003).
  • Yamauchi T, Ueki K, Tobe K et al. Tyrosine phosphorylation of the EGF receptor by the kinase Jak2 is induced by growth hormone. Nature390(6655), 91–96 (1997).
  • Frank SJ. Mechanistic aspects of crosstalk between GH and PRL and ErbB receptor family signaling. J. Mammary Gland Biol. Neoplasia.13(1), 119–129 (2008).
  • Brooks AJ, Wooh JW, Tunny KA, Waters MJ. Growth hormone receptor; mechanism of action. Int. J. Biochem. Cell Biol.40(10), 1984–1989 (2008).
  • Gunnell D, Okasha M, Smith GD, Oliver SE, Sandhu J, Holly JM. Height, leg length, and cancer risk: a systematic review. Epidemiol. Rev.23(2), 313–342 (2001).
  • Queiroga FL, Perez-Alenza D, Silvan G, Pena L, Lopes CS, Illera JC. Serum and intratumoural GH and IGF-I concentrations: Prognostic factors in the outcome of canine mammary cancer. Res. Vet. Sci.89(3), 396-403 (2010).
  • Lundqvist E, Kaprio J, Verkasalo PK et al. Co-twin control and cohort analyses of body mass index and height in relation to breast, prostate, ovarian, corpus uteri, colon and rectal cancer among Swedish and Finnish twins. Int. J. Cancer121(4), 810–818 (2007).
  • Key TJ, Appleby PN, Reeves GK, Roddam AW. Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. Lancet Oncol.11(6), 530–542 (2010).
  • Peyrat JP, Bonneterre J, Hecquet B et al. Plasma insulin-like growth factor-1 (IGF-1) concentrations in human breast cancer. Eur. J. Cancer29A(4), 492–497 (1993).
  • Dupont J, Le Roith D. Insulin-like growth factor 1 and oestradiol promote cell proliferation of MCF-7 breast cancer cells: new insights into their synergistic effects. Mol. Pathol.54(3), 149–154 (2001).
  • Byrne C, Colditz GA, Willett WC, Speizer FE, Pollak M, Hankinson SE. Plasma insulin-like growth factor (IGF) I, IGF-binding protein 3, and mammographic density. Cancer Res.60(14), 3744–3748 (2000).
  • Kleinberg DL, Wood TL, Furth PA, Lee AV. Growth hormone and insulin-like growth factor-I in the transition from normal mammary development to preneoplastic mammary lesions. Endocr. Rev.30(1), 51–74 (2009).
  • Rudd MF, Webb EL, Matakidou A et al. Variants in the GH–IGF axis confer susceptibility to lung cancer. Genome Res.16(6), 693–701 (2006).
  • Le Marchand L, Donlon T, Seifried A, Kaaks R, Rinaldi S, Wilkens LR. Association of a common polymorphism in the human GH1 gene with colorectal neoplasia. J. Natl Cancer Inst.94(6), 454–460 (2002).
  • Menashe I, Maeder D, Garcia-Closas M et al. Pathway analysis of breast cancer genome-wide association study highlights three pathways and one canonical signaling cascade. Cancer Res.70(11), 4453–4459 (2010).
  • Canzian F, McKay JD, Cleveland RJ et al. Genetic variation in the growth hormone synthesis pathway in relation to circulating insulin-like growth factor-I, insulin-like growth factor binding protein-3, and breast cancer risk: results from the European prospective investigation into cancer and nutrition study. Cancer Epidemiol. Biomarkers Prev.14(10), 2316–2325 (2005).
  • Diorio C, Brisson J, Berube S, Pollak M. Genetic polymorphisms involved in insulin-like growth factor (IGF) pathway in relation to mammographic breast density and IGF levels. Cancer Epidemiol. Biomarkers Prev.17(4), 880–888 (2008).
  • Lai JH, Vesprini D, Zhang W, Yaffe MJ, Pollak M, Narod SA. A polymorphic locus in the promoter region of the IGFBP3 gene is related to mammographic breast density. Cancer Epidemiol. Biomarkers Prev.13(4), 573–582 (2004).
  • Verheus M, Maskarinec G, Woolcott CG et al. IGF1, IGFBP1, and IGFBP3 genes and mammographic density: the Multiethnic Cohort. Int. J. Cancer127(5), 1115–1123 (2010).
  • Morimoto LM, Newcomb PA, White E, Bigler J, Potter JD. Insulin-like growth factor polymorphisms and colorectal cancer risk. Cancer Epidemiol. Biomarkers Prev.14(5), 1204–1211 (2005).
  • Friedrichsen DM, Hawley S, Shu J et al.IGF-I and IGFBP-3 polymorphisms and risk of prostate cancer. Prostate65(1), 44–51 (2005).
  • Park K, Kim JH, Jeon HG, Byun SS, Lee E. Influence of IGFBP3 gene polymorphisms on IGFBP3 serum levels and the risk of prostate cancer in low-risk Korean men. Urology75(6), 1516, e1–e7 (2010).
  • Rowlands MA, Gunnell D, Harris R, Vatten LJ, Holly JM, Martin RM. Circulating insulin-like growth factor peptides and prostate cancer risk: a systematic review and meta-analysis. Int. J. Cancer124(10), 2416–2429 (2009).
  • Rinaldi S, Cleveland R, Norat T et al. Serum levels of IGF-I, IGFBP-3 and colorectal cancer risk: results from the EPIC cohort, plus a meta-analysis of prospective studies. Int. J. Cancer126(7), 1702–1715 (2010).
  • Wolpin BM, Meyerhardt JA, Chan AT et al. Insulin, the insulin-like growth factor axis, and mortality in patients with nonmetastatic colorectal cancer. J. Clin. Oncol.27(2), 176–185 (2009).
  • Stattin P, Bylund A, Rinaldi S et al. Plasma insulin-like growth factor-I, insulin-like growth factor-binding proteins, and prostate cancer risk: a prospective study. J. Natl Cancer Inst.92(23), 1910–1917 (2000).
  • Renehan AG, Brennan BM. Acromegaly, growth hormone and cancer risk. Best Pract. Res. Clin. Endocrinol. Metab.22(4), 639–657 (2008).
  • Loeper S, Ezzat S. Acromegaly: re-thinking the cancer risk. Rev. Endocr. Metab. Disord.9(1), 41–58 (2008).
  • Colao A, Pivonello R, Auriemma RS et al. The association of fasting insulin concentrations and colonic neoplasms in acromegaly: a colonoscopy-based study in 210 patients. J. Clin. Endocrinol. Metab.92(10), 3854–3860 (2007).
  • Shevah O, Laron Z. Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: a preliminary report. Growth Horm. IGF Res.17(1), 54–57 (2007).
  • Chernausek SD. Growth and development: how safe is growth hormone therapy for children? Nat. Rev. Endocrinol.6(5), 251–253 (2010).
  • Bell J, Parker KL, Swinford RD, Hoffman AR, Maneatis T, Lippe B. Long-term safety of recombinant human growth hormone in children. J. Clin. Endocrinol. Metab.95(1), 167–177 (2010).
  • Ergun-Longmire B, Mertens AC, Mitby P et al. Growth hormone treatment and risk of second neoplasms in the childhood cancer survivor. J. Clin. Endocrinol. Metab.91(9), 3494–3498 (2006).
  • Luft R, Olivecrona H. Hypophysectomy in the treatment of malignant tumors. Cancer10(4), 789–794 (1957).
  • Moon HD, Simpson ME, Li CH, Evans HM. Neoplasms in rats treated with pituitary growth hormone; pulmonary and lymphatic tissues. Cancer Res.10(5), 297–308 (1950).
  • Tornell J, Carlsson B, Pohjanen P, Wennbo H, Rymo L, Isaksson O. High frequency of mammary adenocarcinomas in metallothionein promoter-human growth hormone transgenic mice created from two different strains of mice. J. Steroid Biochem. Mol. Biol.43(1–3), 237–242 (1992).
  • Bates P, Fisher R, Ward A, Richardson L, Hill DJ, Graham CF. Mammary cancer in transgenic mice expressing insulin-like growth factor II (IGF-II). Br. J. Cancer72(5), 1189–1193 (1995).
  • Snibson KJ, Bhathal PS, Adams TE. Overexpressed growth hormone (GH) synergistically promotes carcinogen-initiated liver tumour growth by promoting cellular proliferation in emerging hepatocellular neoplasms in female and male GH-transgenic mice. Liver21(2), 149–158 (2001).
  • Miquet JG, Gonzalez L, Matos MN et al. Transgenic mice overexpressing GH exhibit hepatic upregulation of GH-signaling mediators involved in cell proliferation. J. Endocrinol.198(2), 317–330 (2008).
  • Hadsell DL, Murphy KL, Bonnette SG, Reece N, Laucirica R, Rosen JM. Cooperative interaction between mutant p53 and des(1–3)IGF-I accelerates mammary tumorigenesis. Oncogene19(7), 889–898 (2000).
  • Carboni JM, Lee AV, Hadsell DL et al. Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res.65(9), 3781–3787 (2005).
  • Michaylira CZ, Simmons JG, Ramocki NM et al. Suppressor of cytokine signaling-2 limits intestinal growth and enterotrophic actions of IGF-I in vivo. Am. J. Physiol. Gastrointest. Liver Physiol.291(3), G472–G481 (2006).
  • Ikeno Y, Hubbard GB, Lee S et al. Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J. Gerontol. A Biol. Sci. Med. Sci.64(5), 522–529 (2009).
  • Zhang X, Mehta RG, Lantvit DD et al. Inhibition of estrogen-independent mammary carcinogenesis by disruption of growth hormone signaling. Carcinogenesis28(1), 143–150 (2007).
  • Yang XF, Beamer WG, Huynh H, Pollak M. Reduced growth of human breast cancer xenografts in hosts homozygous for the lit mutation. Cancer Res.56(7), 1509–1511 (1996).
  • Thordarson G, Semaan S, Low C et al. Mammary tumorigenesis in growth hormone deficient spontaneous dwarf rats; effects of hormonal treatments. Breast Cancer Res. Treat.87(3), 277–290 (2004).
  • Shen Q, Lantvit DD, Lin Q et al. Advanced rat mammary cancers are growth hormone dependent. Endocrinology148(10), 4536–4544 (2007).
  • Wang Z, Prins GS, Coschigano KT et al. Disruption of growth hormone signaling retards early stages of prostate carcinogenesis in the C3(1)/T antigen mouse. Endocrinology146(12), 5188–5196 (2005).
  • Pollak M, Blouin MJ, Zhang JC, Kopchick JJ. Reduced mammary gland carcinogenesis in transgenic mice expressing a growth hormone antagonist. Br. J. Cancer85(3), 428–430 (2001).
  • Divisova J, Kuiatse I, Lazard Z et al. The growth hormone receptor antagonist pegvisomant blocks both mammary gland development and MCF-7 breast cancer xenograft growth. Breast Cancer Res. Treat.98(3), 315–327 (2006).
  • McCutcheon IE, Flyvbjerg A, Hill H et al. Antitumor activity of the growth hormone receptor antagonist pegvisomant against human meningiomas in nude mice. J. Neurosurg.94(3), 487–492 (2001).
  • Dagnaes-Hansen F, Duan H, Rasmussen LM, Friend KE, Flyvbjerg A. Growth hormone receptor antagonist administration inhibits growth of human colorectal carcinoma in nude mice. Anticancer Res.24(6), 3735–3742 (2004).
  • de Ostrovich KK, Lambertz I, Colby JK et al. Paracrine overexpression of insulin-like growth factor-1 enhances mammary tumorigenesis in vivo. Am. J. Pathol.173(3), 824–834 (2008).
  • Olivo-Marston SE, Hursting SD, Lavigne J et al. Genetic reduction of circulating insulin-like growth factor-1 inhibits azoxymethane-induced colon tumorigenesis in mice. Mol. Carcinog.48(12), 1071–1076 (2009).
  • Wu Y, Yakar S, Zhao L, Hennighausen L, LeRoith D. Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis. Cancer Res.62(4), 1030–1035 (2002).
  • Wu Y, Cui K, Miyoshi K et al. Reduced circulating insulin-like growth factor I levels delay the onset of chemically and genetically induced mammary tumors. Cancer Res.63(15), 4384–4388 (2003).
  • Waters MJ. The growth hormone receptor. In: The Handbook of Physiology. Kostyo JL, Goodman HM (Eds). Oxford University Press, NY, USA, 397–444 (1999).
  • Gebre-Medhin M, Kindblom LG, Wennbo H, Tornell J, Meis-Kindblom JM. Growth hormone receptor is expressed in human breast cancer. Am. J. Pathol.158(4), 1217–1222 (2001).
  • Lin CJ, Mendonca BB, Lucon AM, Guazzelli IC, Nicolau W, Villares SM. Growth hormone receptor messenger ribonucleic acid in normal and pathologic human adrenocortical tissues – an analysis by quantitative polymerase chain reaction technique. J. Clin. Endocrinol. Metab.82(8), 2671–2676 (1997).
  • Wu X, Liu F, Yao X, Li W, Chen C. Growth hormone receptor expression is up-regulated during tumorigenesis of human colorectal cancer. J. Surg. Res.143(2), 294–299 (2007).
  • Harrison SM, Barnard R, Ho KY, Rajkovic I, Waters MJ. Control of growth hormone (GH) binding protein release from human hepatoma cells expressing full-length GH receptor. Endocrinology136(2), 651–659 (1995).
  • Pazaitou-Panayiotou K, Kelesidis T, Kelesidis I et al. Growth hormone-binding protein is directly and IGFBP-3 is inversely associated with risk of female breast cancer. Eur. J. Endocrinol.156(2), 187–194 (2007).
  • Lincoln DT, Sinowatz F, Kolle S, Takahashi H, Parsons P, Waters M. Up-regulation of growth hormone receptor immunoreactivity in human melanoma. Anticancer Res.19(3A), 1919–1931 (1999).
  • Weiss-Messer E, Merom O, Adi A et al. Growth hormone (GH) receptors in prostate cancer: gene expression in human tissues and cell lines and characterization, GH signaling and androgen receptor regulation in LNCaP cells. Mol. Cell Endocrinol.220(1–2), 109–123 (2004).
  • Mol JA, van Garderen E, Selman PJ, Wolfswinkel J, Rijinberk A, Rutteman GR. Growth hormone mRNA in mammary gland tumors of dogs and cats. J. Clin. Invest.95(5), 2028–2034 (1995).
  • Mol JA, Henzen-Logmans SC, Hageman P, Misdorp W, Blankenstein MA, Rijnberk A. Expression of the gene encoding growth hormone in the human mammary gland. J. Clin. Endocrinol. Metab.80(10), 3094–3096 (1995).
  • Queiroga FL, Perez-Alenza MD, Silvan G, Pena L, Lopes CS, Illera JC. Crosstalk between GH/IGF-I axis and steroid hormones (progesterone, 17β-estradiol) in canine mammary tumours. J. Steroid Biochem. Mol. Biol.110(1–2), 76–82 (2008).
  • Raccurt M, Lobie PE, Moudilou E et al. High stromal and epithelial human GH gene expression is associated with proliferative disorders of the mammary gland. J. Endocrinol.175(2), 307–318 (2002).
  • Ratkaj I, Stajduhar E, Vucinic S et al. Integrated gene networks in breast cancer development. Funct. Integr. Genomics10(1), 11–19 (2010).
  • van Garderen E, Schalken JA. Morphogenic and tumorigenic potentials of the mammary growth hormone/growth hormone receptor system. Mol. Cell Endocrinol.197(1–2), 153–165 (2002).
  • Gil-Puig C, Blanco M, Garcia-Caballero T, Segura C, Perez-Fernandez R. Pit-1/GHF-1 and GH expression in the MCF-7 human breast adenocarcinoma cell line. J. Endocrinol.173(1), 161–167 (2002).
  • Chopin LK, Veveris-Lowe TL, Philipps AF, Herington AC. Co-expression of GH and GHR isoforms in prostate cancer cell lines. Growth Horm. IGF Res.12(2), 126–136 (2002).
  • Colao A, Marzullo P, Spiezia S et al. Effect of two years of growth hormone and insulin-like growth factor-I suppression on prostate diseases in acromegalic patients. J. Clin. Endocrinol. Metab.85(10), 3754–3761 (2000).
  • Colao A, Di Somma C, Spiezia S, Filippella M, Pivonello R, Lombardi G. Effect of growth hormone (GH) and/or testosterone replacement on the prostate in GH-deficient adult patients. J. Clin. Endocrinol. Metab.88(1), 88–94 (2003).
  • Wang W, Edington HD, Rao UN et al. Effects of high-dose IFNα2β on regional lymph node metastases of human melanoma: modulation of STAT5, FOXP3, and IL-17. Clin. Cancer Res.14(24), 8314–8320 (2008).
  • Ruan W, Powell-Braxton L, Kopchick JJ, Kleinberg DL. Evidence that insulin-like growth factor I and growth hormone are required for prostate gland development. Endocrinology140(5), 1984–1989 (1999).
  • Cunningham BC, Bass S, Fuh G, Wells JA. Zinc mediation of the binding of human growth hormone to the human prolactin receptor. Science250(4988), 1709–1712 (1990).
  • Zhu T, Starling-Emerald B, Zhang X et al. Oncogenic transformation of human mammary epithelial cells by autocrine human growth hormone. Cancer Res.65(1), 317–324 (2005).
  • Xu XQ, Emerald BS, Goh EL et al. Gene expression profiling to identify oncogenic determinants of autocrine human growth hormone in human mammary carcinoma. J. Biol. Chem.280(25), 23987–24003 (2005).
  • Perry JK, Mohankumar KM, Emerald BS, Mertani HC, Lobie PE. The contribution of growth hormone to mammary neoplasia. J. Mammary Gland Biol. Neoplasia.13(1), 131–145 (2008).
  • Brunet-Dunand SE, Vouyovitch C, Araneda S et al. Autocrine human growth hormone promotes tumor angiogenesis in mammary carcinoma. Endocrinology150(3), 1341–1352 (2009).
  • Kaulsay KK, Zhu T, Bennett W, Lee KO, Lobie PE. The effects of autocrine human growth hormone (hGH) on human mammary carcinoma cell behavior are mediated via the hGH receptor. Endocrinology142(2), 767–777 (2001).
  • van den Eijnden MJ, Strous GJ. Autocrine growth hormone: effects on growth hormone receptor trafficking and signaling. Mol. Endocrinol.21(11), 2832–2846 (2007).
  • Conway-Campbell BL, Wooh JW, Brooks AJ et al. Nuclear targeting of the growth hormone receptor results in dysregulation of cell proliferation and tumorigenesis. Proc. Natl Acad. Sci. USA104(33), 13331–13336 (2007).
  • Mertani HC, Garcia-Caballero T, Lambert A et al. Cellular expression of growth hormone and prolactin receptors in human breast disorders. Int. J. Cancer79(2), 202–211 (1998).
  • Lincoln DT, Kaiser HE, Raju GP, Waters MJ. Growth hormone and colorectal carcinoma: localization of receptors. In Vivo14(1), 41–49 (2000).
  • Garcia-Caballero T, Mertani HM, Lambert A et al. Increased expression of growth hormone and prolactin receptors in hepatocellular carcinomas. Endocrine12(3), 265–271 (2000).
  • Dehari R, Nakamura Y, Okamoto N, Nakayama H. Increased nuclear expression of growth hormone receptor in uterine cervical neoplasms of women under 40 years old. Tohoku J. Exp. Med.216(2), 165–172 (2008).
  • Lo HW, Hung MC. Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br. J. Cancer94(2), 184–188 (2006).
  • Conway-Campbell BL, Brooks AJ, Robinson PJ, Perani M, Waters MJ. The extracellular domain of the growth hormone receptor interacts with coactivator activator to promote cell proliferation. Mol. Endocrinol.22(9), 2190–2202 (2008).
  • Sui Y, Yang Z, Xiong S et al. Gene amplification and associated loss of 5´ regulatory sequences of CoAA in human cancers. Oncogene26(6), 822–835 (2007).
  • Li X, Hoeppner LH, Jensen ED, Gopalakrishnan R, Westendorf JJ. Co-activator activator (CoAA) prevents the transcriptional activity of Runt domain transcription factors. J. Cell. Biochem.108(2), 378–387 (2009).
  • Auboeuf D, Dowhan DH, Li X et al. CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing. Mol. Cell Biol.24(1), 442–453 (2004).
  • Carver KC, Schuler LA. Prolactin does not require insulin-like growth factor intermediates but synergizes with insulin-like growth factor I in human breast cancer cells. Mol. Cancer Res.6(4), 634–643 (2008).
  • Carver KC, Arendt LM, Schuler LA. Complex prolactin crosstalk in breast cancer: new therapeutic implications. Mol. Cell Endocrinol.307(1–2), 1–7 (2009).
  • Tornell J, Rymo L, Isaksson OG. Induction of mammary adenocarcinomas in metallothionein promoter-human growth hormone transgenic mice. Int. J. Cancer49(1), 114–117 (1991).
  • Wennbo H, Gebre-Medhin M, Gritli-Linde A, Ohlsson C, Isaksson OG, Tornell J. Activation of the prolactin receptor but not the growth hormone receptor is important for induction of mammary tumors in transgenic mice. J. Clin. Invest.100(11), 2744–2751 (1997).
  • Clevenger CV. Role of prolactin/prolactin receptor signaling in human breast cancer. Breast Dis.18, 75–86 (2003).
  • Dagvadorj A, Collins S, Jomain JB et al. Autocrine prolactin promotes prostate cancer cell growth via Janus kinase-2-signal transducer and activator of transcription-5a/b signaling pathway. Endocrinology148(7), 3089–3101 (2007).
  • Rouet V, Bogorad RL, Kayser C et al. Local prolactin is a target to prevent expansion of basal/stem cells in prostate tumors. Proc. Natl Acad. Sci. USA107(34), 15199–15204 (2010).
  • Harbaum L, Pollheimer MJ, Bauernhofer T et al. Clinicopathological significance of prolactin receptor expression in colorectal carcinoma and corresponding metastases. Mod. Pathol.23(7), 961–971 (2010).
  • Mohankumar KM, Perry JK, Kannan N et al. Transcriptional activation of signal transducer and activator of transcription (STAT) 3 and STAT5B partially mediate homeobox A1-stimulated oncogenic transformation of the immortalized human mammary epithelial cell. Endocrinology149(5), 2219–2229 (2008).
  • Tang JZ, Zuo ZH, Kong XJ et al. Signal transducer and activator of transcription (STAT)-5A and STAT5B differentially regulate human mammary carcinoma cell behavior. Endocrinology151(1), 43–55 (2010).
  • Tang JZ, Kong XJ, Banerjee A et al. STAT3a is oncogenic for endometrial carcinoma cells and mediates the oncogenic effects of autocrine human growth hormone. Endocrinology151(9), 4133–4145 (2010).
  • Levine RL, Gilliland DG. JAK-2 mutations and their relevance to myeloproliferative disease. Curr. Opin Hematol.14(1), 43–47 (2007).
  • Morgan KJ, Gilliland DG. A role for JAK2 mutations in myeloproliferative diseases. Annu. Rev. Med.59, 213–222 (2008).
  • Lacronique V, Boureux A, Valle VD et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science278(5341), 1309–1312 (1997).
  • Carlesso N, Frank DA, Griffin JD. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J. Exp. Med.183(3), 811–820 (1996).
  • Pikman Y, Lee BH, Mercher T et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med.3(7), e270 (2006).
  • Funakoshi-Tago M, Tago K, Abe M, Sonoda Y, Kasahara T. STAT5 activation is critical for the transformation mediated by myeloproliferative disorder-associated JAK2 V617F mutant. J. Biol. Chem.285(8), 5296–5307 (2010).
  • Hoelbl A, Schuster C, Kovacic B et al. STAT5 is indispensable for the maintenance of Bcr/Abl-positive leukaemia. EMBO Mol. Med.2(3), 98–110 (2010).
  • Schwaller J, Parganas E, Wang D et al. STAT5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol. Cell6(3), 693–704 (2000).
  • Gu L, Vogiatzi P, Puhr M et al. STAT5 promotes metastatic behavior of human prostate cancer cells in vitro and in vivo. Endocr. Relat. Cancer17(2), 481–493 (2010).
  • Mirmohammadsadegh A, Hassan M, Bardenheuer W et al. STAT5 phosphorylation in malignant melanoma is important for survival and is mediated through Srs and Jak1 kinases. J. Invest. Dermatol.126(10), 2272–2280 (2006).
  • Hassel JC, Winnemoller D, Schartl M, Wellbrock C. STAT5 contributes to antiapoptosis in melanoma. Melanoma Res.18(6), 378–385 (2008).
  • Lee TK, Man K, Poon RT et al. Signal transducers and activators of transcription 5b activation enhances hepatocellular carcinoma aggressiveness through induction of epithelial-mesenchymal transition. Cancer Res.66(20), 9948–9956 (2006).
  • Wagner KU, Rui H. Jak2/STAT5 signaling in mammogenesis, breast cancer initiation and progression. J. Mammary Gland Biol. Neoplasia.13(1), 93–103 (2008).
  • Koppikar P, Lui VW, Man D et al. Constitutive activation of signal transducer and activator of transcription 5 contributes to tumor growth, epithelial–mesenchymal transition, and resistance to epidermal growth factor receptor targeting. Clin. Cancer Res.14(23), 7682–7690 (2008).
  • Prieur A, Peeper DS. Cellular senescence in vivo: a barrier to tumorigenesis. Curr. Opin Cell Biol.20(2), 150–155 (2008).
  • Mallette FA, Gaumont-Leclerc MF, Huot G, Ferbeyre G. Myc down-regulation as a mechanism to activate the Rb pathway in STAT5a-induced senescence. J. Biol. Chem.282(48), 34938–34944 (2007).
  • Mallette FA, Moiseeva O, Calabrese V, Mao B, Gaumont-Leclerc MF, Ferbeyre G. Transcriptome analysis and tumor suppressor requirements of STAT5-induced senescence. Ann. NY Acad. Sci.1197, 142–151 (2010).
  • Schartl M, Wilde B, Laisney JA, Taniguchi Y, Takeda S, Meierjohann S. A mutated EGFR is sufficient to induce malignant melanoma with genetic background-dependent histopathologies. J. Invest. Dermatol.130(1), 249–258 (2010).
  • Mohapatra S, Coppola D, Riker AI, Pledger WJ. Roscovitine inhibits differentiation and invasion in a three-dimensional skin reconstruction model of metastatic melanoma. Mol. Cancer Res.5(2), 145–151 (2007).
  • Senderowicz AM. Small-molecule cyclin-dependent kinase modulators. Oncogene22(42), 6609–6620 (2003).
  • Mohapatra S, Chu B, Wei S et al. Roscovitine inhibits STAT5 activity and induces apoptosis in the human leukemia virus type 1-transformed cell line MT-2. Cancer Res.63(23), 8523–8530 (2003).
  • Ahonen TJ, Xie J, LeBaron MJ et al. Inhibition of transcription factor STAT5 induces cell death of human prostate cancer cells. J. Biol. Chem.278(29), 27287–27292 (2003).
  • Dagvadorj A, Kirken RA, Leiby B, Karras J, Nevalainen MT. Transcription factor signal transducer and activator of transcription 5 promotes growth of human prostate cancer cells in vivo. Clin. Cancer Res.14(5), 1317–1324 (2008).
  • Kazansky AV, Spencer DM, Greenberg NM. Activation of signal transducer and activator of transcription 5 is required for progression of autochthonous prostate cancer: evidence from the transgenic adenocarcinoma of the mouse prostate system. Cancer Res.63(24), 8757–8762 (2003).
  • Ginestier C, Wicha MS. Mammary stem cell number as a determinate of breast cancer risk. Breast Cancer Res.9(4), 109 (2007).
  • Tan SH, Dagvadorj A, Shen F et al. Transcription factor STAT5 synergizes with androgen receptor in prostate cancer cells. Cancer Res.68(1), 236–248 (2008).
  • Yamashita H, Iwase H, Toyama T, Fujii Y. Naturally occurring dominant-negative STAT5 suppresses transcriptional activity of estrogen receptors and induces apoptosis in T47D breast cancer cells. Oncogene22(11), 1638–1652 (2003).
  • Iavnilovitch E, Groner B, Barash I. Overexpression and forced activation of stat5 in mammary gland of transgenic mice promotes cellular proliferation, enhances differentiation, and delays postlactational apoptosis. Mol. Cancer Res.1(1), 32–47 (2002).
  • Iavnilovitch E, Cardiff RD, Groner B, Barash I. Deregulation of STAT5 expression and activation causes mammary tumors in transgenic mice. Int. J. Cancer112(4), 607–619 (2004).
  • Pardanani AD, Levine RL, Lasho T et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood108(10), 3472–3476 (2006).
  • Ding J, Komatsu H, Wakita A et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood103(11), 4198–4200 (2004).
  • Bernichtein S, Touraine P, Goffin V. New concepts in prolactin biology. J. Endocrinol.206(1), 1–11 (2010).
  • Lempereur L, Brambilla D, Scoto GM et al. Growth hormone protects human lymphocytes from irradiation-induced cell death. Br. J. Pharmacol.138(8), 1411–1416 (2003).
  • Wu X, Wan M, Li G et al. Growth hormone receptor overexpression predicts response of rectal cancers to pre-operative radiotherapy. Eur. J. Cancer42(7), 888–894 (2006).
  • Zatelli MC, Minoia M, Mole D et al. Growth hormone excess promotes breast cancer chemoresistance. J. Clin. Endocrinol. Metab.94(10), 3931–3938 (2009).
  • Blackmore DG, Golmohammadi MG, Large B, Waters MJ, Rietze RL. Exercise increases neural stem cell number in a growth hormone-dependent manner, augmenting the regenerative response in aged mice. Stem Cells27(8), 2044–2052 (2009).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.