43
Views
3
CrossRef citations to date
0
Altmetric
Review

Mammary stem cells and their regulation by steroid hormones

, &
Pages 371-381 | Published online: 10 Jan 2014

References

  • Clemons M, Goss P. Estrogen and the risk of breast cancer. N. Engl. J. Med.344(4), 276–285 (2001).
  • Hankinson SE, Colditz GA, Willett WC. Towards an integrated model for breast cancer etiology: the lifelong interplay of genes, lifestyle, and hormones. Breast Cancer Res.6(5), 213–218 (2004).
  • Pike MC, Spicer DV, Dahmoush L, Press MF. Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol. Rev.15(1), 17–35 (1993).
  • Parker WH, Broder MS, Chang E et al. Ovarian conservation at the time of hysterectomy and long-term health outcomes in the nurses’ health study. Obstet. Gynecol.113(5), 1027–1037 (2009).
  • Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet365(9472), 1687–1717 (2005).
  • Visvanathan K, Chlebowski RT, Hurley P et al. American Society of Clinical Oncology clinical practice guideline update on the use of pharmacologic interventions including tamoxifen, raloxifene, and aromatase inhibition for breast cancer risk reduction. J. Clin. Oncol.27(19), 3235–3258 (2009).
  • Marshall SF, Clarke CA, Deapen D et al. Recent breast cancer incidence trends according to hormone therapy use: the California Teachers Study cohort. Breast Cancer Res.12(1), R4 (2010).
  • Clarke CA, Glaser SL. Declines in breast cancer after the WHI: apparent impact of hormone therapy. Cancer Causes Control18(8), 847–852 (2007).
  • Schedin P. Pregnancy-associated breast cancer and metastasis. Nat. Rev. Cancer6(4), 281–291 (2006).
  • Ma H, Bernstein L, Pike MC, Ursin G. Reproductive factors and breast cancer risk according to joint estrogen and progesterone receptor status: a meta-analysis of epidemiological studies. Breast Cancer Res.8(4), R43 (2006).
  • Stingl J, Eirew P, Ricketson I et al. Purification and unique properties of mammary epithelial stem cells. Nature439, 993–997 (2006).
  • Shackleton M, Vaillant F, Simpson KJ et al. Generation of a functional mammary gland from a single stem cell. Nature439(7072), 84–88 (2006).
  • Anderson E, Clarke RB. Steroid receptors and cell cycle in normal mammary epithelium. J. Mammary Gland Biol. Neoplasia9(1), 3–13 (2004).
  • Korach KS, Couse JF, Curtis SW et al. Estrogen receptor gene disruption: molecular characterization and experimental and clinical phenotypes. Recent Prog. Horm. Res.51, 159–186; discussion 186–158 (1996).
  • Walden PD, Ruan W, Feldman M, Kleinberg DL. Evidence that the mammary fat pad mediates the action of growth hormone in mammary gland development. Endocrinology139(2), 659–662 (1998).
  • Gallego MI, Binart N, Robinson GW et al. Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects. Dev. Biol.229(1), 163–175 (2001).
  • Hadsell DL, Greenberg NM, Fligger JM, Baumrucker CR, Rosen JM. Targeted expression of des(1–3) human insulin-like growth factor I in transgenic mice influences mammary gland development and IGF-binding protein expression. Endocrinology137(1), 321–330 (1996).
  • Xie W, Paterson AJ, Chin E, Nabell LM, Kudlow JE. Targeted expression of a dominant negative epidermal growth factor receptor in the mammary gland of transgenic mice inhibits pubertal mammary duct development. Mol. Endocrinol.11(12), 1766–1781 (1997).
  • Wiesen JF, Young P, Werb Z, Cunha GR. Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development126(2), 335–344 (1999).
  • Bocchinfuso WP, Korach KS. Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J. Mammary Gland Biol. Neoplasia2(4), 323–334 (1997).
  • Mueller SO, Clark JA, Myers PH, Korach KS. Mammary gland development in adult mice requires epithelial and stromal estrogen receptor α. Endocrinology143(6), 2357–2365 (2002).
  • Lydon JP, DeMayo FJ, Funk CR et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev.9(18), 2266–2278 (1995).
  • Smalley M, Ashworth A. Stem cells and breast cancer: a field in transit. Nat. Rev. Cancer3(11), 832–844 (2003).
  • Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L et al. Evidence for a stem cell hierarchy in the adult human breast. J. Cell Biol.177(1), 87–101 (2007).
  • Mulac-Jericevic B, Lydon JP, DeMayo FJ, Conneely OM. Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc. Natl Acad. Sci. USA100(17), 9744–9749 (2003).
  • Brisken C, Park S, Vass T, Lydon JP, O’Malley BW, Weinberg RA. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc. Natl Acad. Sci. USA95(9), 5076–5081 (1998).
  • Neville MC, Morton J, Umemura S. Lactogenesis. The transition from pregnancy to lactation. Pediatr. Clin. North Am.48(1), 35–52 (2001).
  • Clarke RB, Howell A, Potten CS, Anderson E. Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res.57(22), 4987–4991 (1997).
  • Russo J, Ao X, Grill C, Russo IH. Pattern of distribution of cells positive for estrogen receptor α and progesterone receptor in relation to proliferating cells in the mammary gland. Breast Cancer Res. Treat53(3), 217–227 (1999).
  • Mallepell S, Krust A, Chambon P, Brisken C. Paracrine signaling through the epithelial estrogen receptor α is required for proliferation and morphogenesis in the mammary gland. Proc. Natl Acad. Sci. USA103(7), 2196–2201 (2006).
  • Beleut M, Rajaram RD, Caikovski M et al. Two distinct mechanisms underlie progesterone-induced proliferation in the mammary gland. Proc. Natl Acad. Sci. USA107(7), 2989–2994 (2010).
  • Mukherjee A, Soyal SM, Li J et al. Targeting RANKL to a specific subset of murine mammary epithelial cells induces ordered branching morphogenesis and alveologenesis in the absence of progesterone receptor expression. FASEB J.24(11), 4408–4419 (2010).
  • Visvader JE. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev.23(22), 2563–2577 (2009).
  • Smith GH, Medina D. A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J. Cell Sci.90(Pt 1), 173–183 (1988).
  • Sleeman KE, Kendrick H, Robertson D, Isacke CM, Ashworth A, Smalley MJ. Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J. Cell Biol.176, 19–26 (2007).
  • Asselin-Labat ML, Sutherland KD, Barker H et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat. Cell Biol.9(2), 201–209 (2007).
  • Asselin-Labat ML, Vaillant F, Shackleton M, Bouras T, Lindeman GJ, Visvader JE. Delineating the epithelial hierarchy in the mouse mammary gland. Cold Spring Harb. Symp. Quant. Biol.73, 469–478 (2008).
  • Bouras T, Pal B, Vaillant F et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell3(4), 429–441 (2008).
  • Stingl J, Eaves CJ, Kuusk U, Emerman JT. Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation63(4), 201–213 (1998).
  • Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res. Treat67(2), 93–109 (2001).
  • Gudjonsson T, Villadsen R, Nielsen HL, Ronnov-Jessen L, Bissell MJ, Petersen OW. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev.16(6), 693–706 (2002).
  • Dontu G, Abdallah WM, Foley JM et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev.17(10), 1253–1270 (2003).
  • Kuperwasser C, Chavarria T, Wu M et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc. Natl Acad. Sci. USA101(14), 4966–4971 (2004).
  • Lim E, Vaillant F, Wu D et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat. Med.15(8), 907–913 (2009).
  • Ginestier C, Hur MH, Charafe-Jauffret E et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell1(5), 555–567 (2007).
  • Eirew P, Stingl J, Raouf A et al. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat. Med.14(12), 1384–1389 (2008).
  • Booth BW, Smith GH. Estrogen receptor-α and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Res.8(4), R49 (2006).
  • Clarke RB, Spence K, Anderson E, Howell A, Okano H, Potten CS. A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev. Biol.277(2), 443–456 (2005).
  • Asselin-Labat ML, Shackleton M, Stingl J et al. Steroid hormone receptor status of mouse mammary stem cells. J. Natl Cancer Inst.98(14), 1011–1014 (2006).
  • Lim E, Wu D, Pal B et al. Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res.12(2), R21 (2010).
  • Joshi PA, Jackson HW, Beristain AG et al. Progesterone induces adult mammary stem cell expansion. Nature465(7299), 803–807 (2010).
  • Asselin-Labat ML, Vaillant F, Sheridan JM et al. Control of mammary stem cell function by steroid hormone signalling. Nature465(7299), 798–802 (2010).
  • Navarrete MA, Maier CM, Falzoni R et al. Assessment of the proliferative, apoptotic and cellular renovation indices of the human mammary epithelium during the follicular and luteal phases of the menstrual cycle. Breast Cancer Res.7(3), R306–R313 (2005).
  • Graham JD, Mote PA, Salagame U et al. DNA replication licensing and progenitor numbers are increased by progesterone in normal human breast. Endocrinology150(7), 3318–3326 (2009).
  • Howell A, Dowsett M. Endocrinology and hormone therapy in breast cancer: aromatase inhibitors versus antioestrogens. Breast Cancer Res.6(6), 269–274 (2004).
  • Fisher CR, Graves KH, Parlow AF, Simpson ER. Characterization of mice deficient in aromatase (ArKO) because of targeted disruption of the cyp19 gene. Proc. Natl Acad. Sci. USA95(12), 6965–6970 (1998).
  • Ciarloni L, Mallepell S, Brisken C. Amphiregulin is an essential mediator of estrogen receptor α function in mammary gland development. Proc. Natl Acad. Sci. USA104(13), 5455–5460 (2007).
  • Sternlicht MD, Sunnarborg SW, Kouros-Mehr H, Yu Y, Lee DC, Werb Z. Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development132(17), 3923–3933 (2005).
  • Fernandez-Valdivia R, Mukherjee A, Creighton CJ et al. Transcriptional response of the murine mammary gland to acute progesterone exposure. Endocrinology149(12), 6236–6250 (2008).
  • Srivastava S, Matsuda M, Hou Z et al. Receptor activator of NF-κB ligand induction via Jak2 and Stat5a in mammary epithelial cells. J. Biol. Chem.278(46), 46171–46178 (2003).
  • Gonzalez-Suarez E, Branstetter D, Armstrong A, Dinh H, Blumberg H, Dougall WC. RANK overexpression in transgenic mice with mouse mammary tumor virus promoter-controlled RANK increases proliferation and impairs alveolar differentiation in the mammary epithelia and disrupts lumen formation in cultured epithelial acini. Mol. Cell Biol.27(4), 1442–1454 (2007).
  • Fata JE, Kong YY, Li J et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell103(1), 41–50 (2000).
  • Fernandez-Valdivia R, Mukherjee A, Ying Y et al. The RANKL signaling axis is sufficient to elicit ductal side-branching and alveologenesis in the mammary gland of the virgin mouse. Dev. Biol.328(1), 127–139 (2009).
  • Kim NS, Kim HJ, Koo BK et al. Receptor activator of NF-κB ligand regulates the proliferation of mammary epithelial cells via Id2. Mol. Cell Biol.26(3), 1002–1013 (2006).
  • Schramek D, Leibbrandt A, Sigl V et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature468(7320), 98–102 (2010).
  • Woodrow JP, Sharpe CJ, Fudge NJ, Hoff AO, Gagel RF, Kovacs CS. Calcitonin plays a critical role in regulating skeletal mineral metabolism during lactation. Endocrinology147(9), 4010–4021 (2006).
  • Guzman RC, Yang J, Rajkumar L, Thordarson G, Chen X, Nandi S. Hormonal prevention of breast cancer: mimicking the protective effect of pregnancy. Proc. Natl Acad. Sci. USA96(5), 2520–2525 (1999).
  • Medina D, Smith GH. Chemical carcinogen-induced tumorigenesis in parous, involuted mouse mammary glands. J. Natl Cancer Inst.91(11), 967–969 (1999).
  • D’Cruz CM, Moody SE, Master SR et al. Persistent parity-induced changes in growth factors, TGF-β3, and differentiation in the rodent mammary gland. Mol. Endocrinol.16(9), 2034–2051 (2002).
  • Master SR, Chodosh LA. Evolving views of involution. Breast Cancer Res.6(2), 89–92 (2004).
  • Matulka LA, Triplett AA, Wagner KU. Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Dev. Biol.303(1), 29–44 (2007).
  • Boulanger CA, Wagner KU, Smith GH. Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-β1 expression. Oncogene24(4), 552–560 (2005).
  • Ginger MR, Gonzalez-Rimbau MF, Gay JP, Rosen JM. Persistent changes in gene expression induced by estrogen and progesterone in the rat mammary gland. Mol. Endocrinol.15(11), 1993–2009 (2001).
  • Britt K, Ashworth A, Smalley M. Pregnancy and the risk of breast cancer. Endocr. Relat. Cancer14(4), 907–933 (2007).
  • Britt KL, Kendrick H, Regan JL et al. Pregnancy in the mature adult mouse does not alter the proportion of mammary epithelial stem/progenitor cells. Breast Cancer Res.11(2), R20 (2009).
  • Siwko SK, Dong J, Lewis MT, Liu H, Hilsenbeck SG, Li Y. Evidence that an early pregnancy causes a persistent decrease in the number of functional mammary epithelial stem cells – implications for pregnancy-induced protection against breast cancer. Stem Cells26(12), 3205–3209 (2008).
  • Smith GH. Stem cells and mammary cancer in mice. Stem Cell Rev.1(3), 215–223 (2005).
  • Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE. The mammary progenitor marker CD61/β3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res.68(19), 7711–7717 (2008).
  • Li Y, Welm B, Podsypanina K et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc. Natl Acad. Sci. USA100(26), 15853–15858 (2003).
  • Liu BY, McDermott SP, Khwaja SS, Alexander CM. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl Acad. Sci. USA101(12), 4158–4163 (2004).
  • Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM. WNT/β-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc. Natl Acad. Sci. USA104(2), 618–623 (2007).
  • Cicalese A, Bonizzi G, Pasi CE et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell138(6), 1083–1095 (2009).
  • Hewitt SC, Bocchinfuso WP, Zhai J et al. Lack of ductal development in the absence of functional estrogen receptor α delays mammary tumor formation induced by transgenic expression of ErbB2/neu. Cancer Res.62(10), 2798–2805 (2002).
  • Lydon JP, Ge G, Kittrell FS, Medina D, O’Malley BW. Murine mammary gland carcinogenesis is critically dependent on progesterone receptor function. Cancer Res.59(17), 4276–4284 (1999).
  • Gonzalez-Suarez E, Jacob AP, Jones J et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature468(7320), 103–107 (2010).
  • Liu X, Holstege H, van der Gulden H et al. Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc. Natl Acad. Sci. USA104(29), 12111–12116 (2007).
  • Zheng L, Annab LA, Afshari CA, Lee WH, Boyer TG. BRCA1 mediates ligand-independent transcriptional repression of the estrogen receptor. Proc. Natl Acad. Sci. USA98(17), 9587–9592 (2001).
  • Ma Y, Katiyar P, Jones LP et al. The breast cancer susceptibility gene BRCA1 regulates progesterone receptor signaling in mammary epithelial cells. Mol. Endocrinol.20(1), 14–34 (2006).
  • Fan S, Wang J, Yuan R et al. BRCA1 inhibition of estrogen receptor signaling in transfected cells. Science284(5418), 1354–1356 (1999).
  • Poole AJ, Li Y, Kim Y, Lin SC, Lee WH, Lee EY. Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science314(5804), 1467–1470 (2006).
  • Molyneux G, Geyer FC, Magnay FA et al. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell7(3), 403–417 (2010).
  • Fisher B, Costantino JP, Wickerham DL et al. Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J. Natl Cancer Inst.97(22), 1652–1662 (2005).
  • King MC, Wieand S, Hale K et al. Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) Breast Cancer Prevention Trial. JAMA286(18), 2251–2256 (2001).
  • Narod SA, Brunet JS, Ghadirian P et al. Tamoxifen and risk of contralateral breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Hereditary Breast Cancer Clinical Study Group. Lancet356(9245), 1876–1881 (2000).
  • Fornier MN. Denosumab: second chapter in controlling bone metastases or a new book? J. Clin. Oncol.28(35), 5127–5131 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.