43
Views
36
CrossRef citations to date
0
Altmetric
Review

The hedgehog/Gli signaling paradigm in prostate cancer

, &
Pages 453-467 | Published online: 10 Jan 2014

References

  • Kessler B, Albertsen P. The natural history of prostate cancer. Urol. Clin. North Am.30(2), 219–226 (2003).
  • Brawley OW, Ankerst DP, Thompson IM. Screening for prostate cancer. CA Cancer J. Clin.59(4), 264–273 (2009).
  • Shteynshlyuger A, Andriole GL. Prostate cancer: to screen or not to screen? Urol. Clin. North Am.37(1), 1–9 (2010).
  • Wolf AM, Wender RC, Etzioni RB et al. American Cancer Society guideline for the early detection of prostate cancer: update 2010. CA Cancer J. Clin.60(2), 70–98 (2010).
  • McConnell JD. Physiologic basis of endocrine therapy for prostatic cancer. Urol. Clin. North Am.18(1), 1–13 (1991).
  • Culig Z, Bartsch G. Androgen axis in prostate cancer. J. Cell Biochem.99(2), 373–381 (2006).
  • Mohler JL. Castration-recurrent prostate cancer is not androgen-independent. Adv. Exp. Med. Biol.617, 223–234 (2008).
  • Yuan X, Balk SP. Mechanisms mediating androgen receptor reactivation after castration. Urol. Oncol.27(1), 36–41 (2009).
  • Attar RM, Takimoto CH, Gottardis MM. Castration-resistant prostate cancer: locking up the molecular escape routes. Clin. Cancer Res.15(10), 3251–3255 (2009).
  • Knudsen KE, Scher HI. Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer. Clin. Cancer Res.15(15), 4792–4798 (2009).
  • Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr. Biol.17(2), 165–172 (2007).
  • Morton JP, Mongeau ME, Klimstra DS et al. Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proc. Natl Acad. Sci. USA104(12), 5103–5108 (2007).
  • Varnat F, Duquet A, Malerba M et al. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol. Med.1(6–7), 338–351 (2009).
  • Bar EE, Chaudhry A, Lin A et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells25(10), 2524–2533 (2007).
  • Stecca B, Mas C, Clement V et al. Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc. Natl Acad. Sci. USA104(14), 5895–5900 (2007).
  • Kasper M, Jaks V, Fiaschi M, Toftgard R. Hedgehog signalling in breast cancer. Carcinogenesis30(6), 903–911 (2009).
  • Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev.15(23), 3059–3087 (2001).
  • Jiang J, Hui CC. Hedgehog signaling in development and cancer. Dev. Cell15(6), 801–812 (2008).
  • Wilson CW, Chuang PT. Mechanism and evolution of cytosolic Hedgehog signal transduction. Development137(13), 2079–2094 (2010).
  • Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature287(5785), 795–801 (1980).
  • Lee JJ, von Kessler DP, Parks S, Beachy PA. Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell71(1), 33–50 (1992).
  • Marigo V, Roberts DJ, Lee SM et al. Cloning, expression, and chromosomal location of SHH and IHH: two human homologues of the Drosophila segment polarity gene hedgehog. Genomics28(1), 44–51 (1995).
  • Bitgood MJ, Shen L, McMahon AP. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr. Biol.6(3), 298–304 (1996).
  • Breitling R. Greased hedgehogs: new links between hedgehog signaling and cholesterol metabolism. Bioessays29(11), 1085–1094 (2007).
  • Burke R, Nellen D, Bellotto M et al. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell99(7), 803–815 (1999).
  • Carpenter D, Stone DM, Brush J et al. Characterization of two patched receptors for the vertebrate hedgehog protein family. Proc. Natl Acad. Sci. USA95(23), 13630–13634 (1998).
  • Wong SY, Reiter JF. The primary cilium at the crossroads of mammalian hedgehog signaling. Curr. Top Dev. Biol.85, 225–260 (2008).
  • Goetz SC, Anderson KV. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet.11(5), 331–344 (2010).
  • Ruiz i Altaba A, Sanchez P, Dahmane N. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat. Rev. Cancer2(5), 361–372 (2002).
  • Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev.22(18), 2454–2472 (2008).
  • Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF. Vertebrate Smoothened functions at the primary cilium. Nature437(7061), 1018–1021 (2005).
  • Corcoran RB, Scott MP. Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc. Natl Acad. Sci. USA103(22), 8408–8413 (2006).
  • Dwyer JR, Sever N, Carlson M, Nelson SF, Beachy PA, Parhami F. Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J. Biol. Chem.282(12), 8959–8968 (2007).
  • Rohatgi R, Milenkovic L, Corcoran RB, Scott MP. Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. Proc. Natl Acad. Sci. USA106(9), 3196–3201 (2009).
  • Chen JK, Taipale J, Young KE, Maiti T, Beachy PA. Small molecule modulation of Smoothened activity. Proc. Natl Acad. Sci. USA99(22), 14071–14076 (2002).
  • Wilson CW, Chen MH, Chuang PT. Smoothened adopts multiple active and inactive conformations capable of trafficking to the primary cilium. PLoS ONE4(4), e5182 (2009).
  • Hallikas O, Palin K, Sinjushina N et al. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell124(1), 47–59 (2006).
  • Winklmayr M, Schmid C, Laner-Plamberger S et al. Non-consensus GLI binding sites in Hedgehog target gene regulation. BMC Mol. Biol.11, 2 (2010).
  • Koebernick K, Pieler T. Gli-type zinc finger proteins as bipotential transducers of Hedgehog signaling. Differentiation70(2–3), 69–76 (2002).
  • Pan Y, Wang C, Wang B. Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev. Biol.326(1), 177–189 (2009).
  • Wen X, Lai CK, Evangelista M, Hongo JA, de Sauvage FJ, Scales SJ. Kinetics of hedgehog-dependent full-length Gli3 accumulation in primary cilia and subsequent degradation. Mol. Cell Biol.30(8), 1910–1922 (2010).
  • Smelkinson MG, Zhou Q, Kalderon D. Regulation of Ci-SCFSlimb binding, Ci proteolysis, and hedgehog pathway activity by Ci phosphorylation. Dev. Cell13(4), 481–495 (2007).
  • Zhang Q, Shi Q, Chen Y et al. Multiple Ser/Thr-rich degrons mediate the degradation of Ci/Gli by the Cul3-HIB/SPOP E3 ubiquitin ligase. Proc. Natl Acad. Sci. USA106(50), 21191–21196 (2009).
  • Wang C, Pan Y, Wang B. Suppressor of fused and Spop regulate the stability, processing and function of Gli2 and Gli3 full-length activators but not their repressors. Development137(12), 2001–2009 (2010).
  • Kasper M, Regl G, Frischauf AM, Aberger F. GLI transcription factors: mediators of oncogenic Hedgehog signalling. Eur. J. Cancer42(4), 437–445 (2006).
  • Ding Q, Motoyama J, Gasca S et al. Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development125(14), 2533–2543 (1998).
  • Park HL, Bai C, Platt KA et al. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development127(8), 1593–1605 (2000).
  • Chuang PT, McMahon AP. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature397(6720), 617–621 (1999).
  • McLellan JS, Zheng X, Hauk G, Ghirlando R, Beachy PA, Leahy DJ. The mode of Hedgehog binding to Ihog homologues is not conserved across different phyla. Nature455(7215), 979–983 (2008).
  • Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet.1(4), e53 (2005).
  • Kim J, Kato M, Beachy PA. Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proc. Natl Acad. Sci. USA106(51), 21666–21671 (2009).
  • Canettieri G, Di Marcotullio L, Greco A et al. Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nat. Cell Biol.12(2), 132–142 (2010).
  • Cox B, Briscoe J, Ulloa F. SUMOylation by Pias1 regulates the activity of the Hedgehog dependent Gli transcription factors. PLoS ONE5(8), e11996 (2010).
  • Chen MH, Wilson CW, Li YJ et al. Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev.23(16), 1910–1928 (2009).
  • Jia J, Kolterud A, Zeng H et al. Suppressor of Fused inhibits mammalian Hedgehog signaling in the absence of cilia. Dev. Biol.330(2), 452–460 (2009).
  • Sinha S, Chen JK. Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat. Chem. Biol.2(1), 29–30 (2006).
  • Incardona JP, Gaffield W, Kapur RP, Roelink H. The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development125(18), 3553–3562 (1998).
  • Roessler E, Du YZ, Mullor JL et al. Loss-of-function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly-like features. Proc. Natl Acad. Sci. USA100(23), 13424–13429 (2003).
  • Machold R, Hayashi S, Rutlin M et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron39(6), 937–950 (2003).
  • Mo R, Freer AM, Zinyk DL et al. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development124(1), 113–123 (1997).
  • Motoyama J, Liu J, Mo R, Ding Q, Post M, Hui CC. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat. Genet.20(1), 54–57 (1998).
  • Podlasek CA, Barnett DH, Clemens JQ, Bak PM, Bushman W. Prostate development requires Sonic hedgehog expressed by the urogenital sinus epithelium. Dev. Biol.209(1), 28–39 (1999).
  • Berman DM, Desai N, Wang X et al. Roles for Hedgehog signaling in androgen production and prostate ductal morphogenesis. Dev. Biol.267(2), 387–398 (2004).
  • Freestone SH, Marker P, Grace OC et al. Sonic hedgehog regulates prostatic growth and epithelial differentiation. Dev. Biol.264(2), 352–362 (2003).
  • Barsoum IB, Yao HH. Fetal Leydig cells: progenitor cell maintenance and differentiation. J. Androl.31(1), 11–15 (2010).
  • Karhadkar SS, Bova GS, Abdallah N et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature431(7009), 707–712 (2004).
  • Pu Y, Huang L, Prins GS. Sonic hedgehog-patched Gli signaling in the developing rat prostate gland: lobe-specific suppression by neonatal estrogens reduces ductal growth and branching. Dev. Biol.273(2), 257–275 (2004).
  • Lamm ML, Catbagan WS, Laciak RJ et al. Sonic hedgehog activates mesenchymal Gli1 expression during prostate ductal bud formation. Dev. Biol.249(2), 349–366 (2002).
  • Haraguchi R, Motoyama J, Sasaki H et al. Molecular analysis of coordinated bladder and urogenital organ formation by Hedgehog signaling. Development134(3), 525–533 (2007).
  • Jenkins D. Hedgehog signalling: emerging evidence for non-canonical pathways. Cell Signal.21(7), 1023–1034 (2009).
  • Hahn H, Wojnowski L, Miller G, Zimmer A. The patched signaling pathway in tumorigenesis and development: lessons from animal models. J. Mol. Med.77(6), 459–468 (1999).
  • Zurawel RH, Allen C, Wechsler-Reya R, Scott MP, Raffel C. Evidence that haploinsufficiency of Ptch leads to medulloblastoma in mice. Genes Chromosomes Cancer28(1), 77–81 (2000).
  • Lee Y, Kawagoe R, Sasai K et al. Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene26(44), 6442–6447 (2007).
  • Taylor MD, Liu L, Raffel C et al. Mutations in SUFU predispose to medulloblastoma. Nat. Genet.31(3), 306–310 (2002).
  • Reifenberger J, Wolter M, Knobbe CB et al. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br. J. Dermatol.152(1), 43–51 (2005).
  • Pan S, Dong Q, Sun LS, Li TJ. Mechanisms of inactivation of PTCH1 gene in nevoid basal cell carcinoma syndrome: modification of the two-hit hypothesis. Clin. Cancer Res.16(2), 442–450 (2010).
  • Pastorino L, Ghiorzo P, Nasti S et al. Identification of a SUFU germline mutation in a family with Gorlin syndrome. Am. J. Med. Genet. A149A(7), 1539–1543 (2009).
  • Lam CW, Xie J, To KF et al. A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene18(3), 833–836 (1999).
  • Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature422(6929), 313–317 (2003).
  • Kubo M, Nakamura M, Tasaki A et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res.64(17), 6071–6074 (2004).
  • Yauch RL, Gould SE, Scales SJ et al. A paracrine requirement for hedgehog signalling in cancer. Nature455(7211), 406–410 (2008).
  • Lauth M, Toftgard R. Non-canonical activation of GLI transcription factors: implications for targeted anti-cancer therapy. Cell Cycle6(20), 2458–2463 (2007).
  • Dennler S, Andre J, Verrecchia F, Mauviel A. Cloning of the human GLI2 promoter: transcriptional activation by transforming growth factor-β via SMAD3/β-catenin cooperation. J. Biol. Chem.284(46), 31523–31531 (2009).
  • Zhang J, Lipinski RJ, Gipp JJ, Shaw AK, Bushman W. Hedgehog pathway responsiveness correlates with the presence of primary cilia on prostate stromal cells. BMC Dev. Biol.9, 50 (2009).
  • Zhang X, Harrington N, Moraes RC, Wu MF, Hilsenbeck SG, Lewis MT. Cyclopamine inhibition of human breast cancer cell growth independent of Smoothened (Smo). Breast Cancer Res. Treat.115(3), 505–521 (2009).
  • Tremblay MR, Lescarbeau A, Grogan MJ et al. Discovery of a potent and orally active hedgehog pathway antagonist (IPI-926). J. Med. Chem.52(14), 4400–4418 (2009).
  • Von Hoff DD, LoRusso PM, Rudin CM et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N. Engl. J. Med.361(12), 1164–1172 (2009).
  • Lorusso PM, Rudin CM, Reddy JC et al. Phase I trial of hedgehog pathway inhibitor GDC-0449 in patients with refractory, locally-advanced or metastatic solid tumors. Clin. Cancer Res.17, 2502–2511 (2011).
  • Mimeault M, Johansson SL, Vankatraman G et al. Combined targeting of epidermal growth factor receptor and hedgehog signaling by gefitinib and cyclopamine cooperatively improves the cytotoxic effects of docetaxel on metastatic prostate cancer cells. Mol. Cancer Ther.6(3), 967–978 (2007).
  • Stanton BZ, Peng LF, Maloof N et al. A small molecule that binds Hedgehog and blocks its signaling in human cells. Nat. Chem. Biol.5(3), 154–156 (2009).
  • Lauth M, Bergstrom A, Shimokawa T, Toftgard R. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc. Natl Acad. Sci. USA104(20), 8455–8460 (2007).
  • Hyman JM, Firestone AJ, Heine VM et al. Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. Proc. Natl Acad. Sci. USA106(33), 14132–14137 (2009).
  • Murgo AJ. Clinical trials of arsenic trioxide in hematologic and solid tumors: overview of the National Cancer Institute Cooperative Research and Development Studies. Oncologist6(Suppl. 2), 22–28 (2001).
  • Kim J, Lee JJ, Gardner D, Beachy PA. Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. Proc. Natl Acad. Sci. USA107(30), 13432–13437 (2010).
  • Beauchamp EM, Ringer L, Bulut G et al. Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway. J. Clin. Invest.121(1), 148–160 (2011).
  • Sanchez P, Hernandez AM, Stecca B et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG–GLI1 signaling. Proc. Natl Acad. Sci. USA101(34), 12561–12566 (2004).
  • Mao J, Ligon KL, Rakhlin EY et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res.66(20), 10171–10178 (2006).
  • Chen BY, Lin DP, Liu JY et al. A mouse prostate cancer model induced by Hedgehog overexpression. J. Biomed. Sci.13(3), 373–384 (2006).
  • Sheng T, Li C, Zhang X et al. Activation of the hedgehog pathway in advanced prostate cancer. Mol. Cancer3, 29 (2004).
  • Fan L, Pepicelli CV, Dibble CC et al. Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology145(8), 3961–3970 (2004).
  • Azoulay S, Terry S, Chimingqi M et al. Comparative expression of Hedgehog ligands at different stages of prostate carcinoma progression. J. Pathol.216(4), 460–470 (2008).
  • Narita S, So A, Ettinger S et al. GLI2 knockdown using an antisense oligonucleotide induces apoptosis and chemosensitizes cells to paclitaxel in androgen-independent prostate cancer. Clin. Cancer Res.14(18), 5769–5777 (2008).
  • Shaw A, Gipp J, Bushman W. The Sonic Hedgehog pathway stimulates prostate tumor growth by paracrine signaling and recapitulates embryonic gene expression in tumor myofibroblasts. Oncogene28(50), 4480–4490 (2009).
  • Zhang J, Lipinski R, Shaw A, Gipp J, Bushman W. Lack of demonstrable autocrine hedgehog signaling in human prostate cancer cell lines. J. Urol.177(3), 1179–1185 (2007).
  • McCarthy FR, Brown AJ. Autonomous Hedgehog signalling is undetectable in PC-3 prostate cancer cells. Biochem. Biophys. Res. Commun.373(1), 109–112 (2008).
  • Thiyagarajan S, Bhatia N, Reagan-Shaw S et al. Role of GLI2 transcription factor in growth and tumorigenicity of prostate cells. Cancer Res.67(22), 10642–10646 (2007).
  • Stecca B, Mas C, Ruiz i Altaba A. Interference with HH-GLI signaling inhibits prostate cancer. Trends Mol. Med.11(5), 199–203 (2005).
  • Reddy GP, Barrack ER, Dou QP et al. Regulatory processes affecting androgen receptor expression, stability, and function: potential targets to treat hormone-refractory prostate cancer. J. Cell Biochem.98(6), 1408–1423 (2006).
  • Terry S, Yang X, Chen MW, Vacherot F, Buttyan R. Multifaceted interaction between the androgen and Wnt signaling pathways and the implication for prostate cancer. J. Cell Biochem.99(2), 402–410 (2006).
  • Chen M, Tanner M, Levine AC, Levina E, Ohouo P, Buttyan R. Androgenic regulation of hedgehog signaling pathway components in prostate cancer cells. Cell Cycle8(1), 149–157 (2009).
  • Chen M, Feuerstein MA, Levina E et al. Hedgehog/Gli supports androgen signaling in androgen deprived and androgen independent prostate cancer cells. Mol. Cancer9, 89 (2010).
  • Chen G, Goto Y, Sakamoto R et al. GLI1, a crucial mediator of sonic hedgehog signaling in prostate cancer, functions as a negative modulator for androgen receptor. Biochem. Biophys. Res. Commun.404(3), 809–815 (2011).
  • Keys DN, Lewis DL, Selegue JE et al. Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. Science283(5401), 532–534 (1999).
  • Agren M, Kogerman P, Kleman MI, Wessling M, Toftgard R. Expression of the PTCH1 tumor suppressor gene is regulated by alternative promoters and a single functional Gli-binding site. Gene330, 101–114 (2004).
  • Bonifas JM, Pennypacker S, Chuang PT et al. Activation of expression of hedgehog target genes in basal cell carcinomas. J. Invest. Dermatol.116(5), 739–742 (2001).
  • Bishop CL, Bergin AM, Fessart D et al. Primary cilium-dependent and -independent Hedgehog signaling inhibits p16(INK4A). Mol. Cell40(4), 533–547 (2010).
  • Yoon JW, Kita Y, Frank DJ et al. Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. J. Biol. Chem.277(7), 5548–5555 (2002).
  • Mill P, Mo R, Hu MC, Dagnino L, Rosenblum ND, Hui CC. Shh controls epithelial proliferation via independent pathways that converge on N-Myc. Dev. Cell9(2), 293–303 (2005).
  • Rizvi S, Demars CJ, Comba A et al. Combinatorial chemoprevention reveals a novel smoothened-independent role of GLI1 in esophageal carcinogenesis. Cancer Res.70(17), 6787–6796 (2010).
  • Sasaki H, Hui C, Nakafuku M, Kondoh H. A binding site for Gli proteins is essential for HNF-3β floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development124(7), 1313–1322 (1997).
  • Teh MT, Wong ST, Neill GW, Ghali LR, Philpott MP, Quinn AG. FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res.62(16), 4773–4780 (2002).
  • Eichberger T, Regl G, Ikram MS et al. FOXE1, a new transcriptional target of GLI2 is expressed in human epidermis and basal cell carcinoma. J. Invest. Dermatol.122(5), 1180–1187 (2004).
  • Laner-Plamberger S, Kaser A, Paulischta M, Hauser-Kronberger C, Eichberger T, Frischauf AM. Cooperation between GLI and JUN enhances transcription of JUN and selected GLI target genes. Oncogene28(13), 1639–1651 (2009).
  • Vokes SA, Ji H, McCuine S et al. Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning. Development134(10), 1977–1989 (2007).
  • Yoon JW, Gilbertson R, Iannaccone S, Iannaccone P, Walterhouse D. Defining a role for Sonic hedgehog pathway activation in desmoplastic medulloblastoma by identifying GLI1 target genes. Int. J. Cancer124(1), 109–119 (2009).
  • Vokes SA, Ji H, Wong WH, McMahon AP. A genome-scale analysis of the cis-regulatory circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb. Genes Dev.22(19), 2651–2663 (2008).
  • Yu M, Gipp J, Yoon JW, Iannaccone P, Walterhouse D, Bushman W. Sonic hedgehog-responsive genes in the fetal prostate. J. Biol. Chem.284(9), 5620–5629 (2009).
  • Katoh Y, Katoh M. WNT antagonist, SFRP1, is Hedgehog signaling target. Int. J. Mol. Med.17(1), 171–175 (2006).
  • Eichberger T, Kaser A, Pixner C et al. GLI2-specific transcriptional activation of the bone morphogenetic protein/activin antagonist follistatin in human epidermal cells. J. Biol. Chem.283(18), 12426–12437 (2008).
  • Regl G, Kasper M, Schnidar H et al. Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Res.64(21), 7724–7731 (2004).
  • Tanese K, Fukuma M, Ishiko A, Sakamoto M. Endothelin-2 is upregulated in basal cell carcinoma under control of Hedgehog signaling pathway. Biochem. Biophys. Res. Commun.391(1), 486–491 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.