14
Views
1
CrossRef citations to date
0
Altmetric
Review

Src kinase: a therapeutic opportunity in endocrine-responsive and resistant breast cancer

&
Pages 423-435 | Published online: 10 Jan 2014

References

  • Nicholson RI, Johnston SR. Endocrine therapy – current benefits and limitations. Breast Cancer Res. Treat.93(Suppl. 1), S3–S10 (2005).
  • Conte P, Guarneri V, Bengala C. Evolving nonendocrine therapeutic options for metastatic breast cancer: how adjuvant chemotherapy influences treatment. Clin. Breast Cancer7(11), 841–849 (2007).
  • Howell A, Bundred NJ, Cuzick J, Allred DC, Clarke R. Response and resistance to the endocrine prevention of breast cancer. Adv. Exp. Med. Biol.617, 201–211 (2008).
  • Nicholson RI, Hutcheson IR, Jones HE et al. Growth factor signalling in endocrine and anti-growth factor resistant breast cancer. Rev. Endocr. Metab. Disord.8(3), 241–253 (2007).
  • Arpino G, Wiechmann L, Osborne CK, Schiff R. Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr. Rev.29(2), 217–233 (2008).
  • Nicholson RI, Staka C, Boyns F, Hutcheson IR, Gee JM. Growth factor-driven mechanisms associated with resistance to estrogen deprivation in breast cancer: new opportunities for therapy. Endocr. Relat. Cancer11(4), 623–641 (2004).
  • Hiscox S, Morgan L, Barrow D, Dutkowskil C, Wakeling A, Nicholson RI. Tamoxifen resistance in breast cancer cells is accompanied by an enhanced motile and invasive phenotype: inhibition by gefitinib (‘Iressa’, ZD1839). Clin. Exp. Metastasis21(3), 201–212 (2004).
  • Hiscox S, Morgan L, Green T, Barrow D, Gee J, Nicholson RI. Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast Cancer Res. Treat.1–12 (2005).
  • Hiscox S, Jordan NJ, Smith C et al. Dual targeting of Src and ER prevents acquired antihormone resistance in breast cancer cells. Breast Cancer Res. Treat.115(1), 57–67 (2009).
  • Martin GS. The road to Src. Oncogene23(48), 7910–7917 (2004).
  • Martins-Green M, Bixby JL, Yamamoto T, Graf T, Sudol M. Tissue specific expression of Yrk kinase: implications for differentiation and inflammation. Int. J. Biochem. Cell Biol.32(3), 351–364 (2000).
  • Wong KS, Proulx K, Rost MS, Sumanas S. Identification of vasculature-specific genes by microarray analysis of Etsrp/Etv2 overexpressing zebrafish embryos. Dev. Dyn.238(7), 1836–1850 (2009).
  • Gomez GA, Veldman MB, Zhao Y, Burgess S, Lin S. Discovery and characterization of novel vascular and hematopoietic genes downstream of Etsrp in zebrafish. PLoS One4(3), e4994 (2009).
  • Bradshaw JM. The Src, Syk, and Tec family kinases: distinct types of molecular switches. Cell Signal.22(8), 1175–1184 (2010).
  • Vadlamudi RK, Sahin AA, Adam L, Wang RA, Kumar R. Heregulin and HER2 signaling selectively activates c-Src phosphorylation at tyrosine 215. FEBS Lett.543(1–3), 76–80 (2003).
  • Chong YP, Mulhern TD, Cheng HC. C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK) – endogenous negative regulators of Src-family protein kinases. Growth Factors23(3), 233–244 (2005).
  • Chong YP, Mulhern TD, Zhu HJ et al. A novel non-catalytic mechanism employed by the C-terminal Src-homologous kinase to inhibit Src-family kinase activity. J. Biol. Chem.279(20), 20752–20766 (2004).
  • Yagi R, Waguri S, Sumikawa Y et al. C-terminal Src kinase controls development and maintenance of mouse squamous epithelia. EMBO J.26(5), 1234–1244 (2007).
  • Di Stefano P, Damiano L, Cabodi S et al. p140Cap protein suppresses tumour cell properties, regulating Csk and Src kinase activity. EMBO J.26(12), 2843–2855 (2007).
  • Sirvent A, Benistant C, Pannequin J et al. Src family tyrosine kinases-driven colon cancer cell invasion is induced by Csk membrane delocalization. Oncogene29(9), 1303–1315 (2010).
  • McShan GD, Zagozdzon R, Park SY et al. Csk homologous kinase associates with RAFTK/Pyk2 in breast cancer cells and negatively regulates its activation and breast cancer cell migration. Int. J. Oncol.21(1), 197–205 (2002).
  • Stover DR, Furet P, Lydon NB. Modulation of the SH2 binding specificity and kinase activity of Src by tyrosine phosphorylation within its SH2 domain. J. Biol. Chem.271(21), 12481–12487 (1996).
  • Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P. Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol. Cell Biol.25(15), 6391–6403 (2005).
  • Sun Y, McGarrigle D, Huang XY. When a G protein-coupled receptor does not couple to a G protein. Mol. Biosyst.3(12), 849–854 (2007).
  • Patwardhan P, Resh MD. Myristoylation and membrane binding regulate c-Src stability and kinase activity. Mol. Cell Biol.30(17), 4094–4107 (2010).
  • Irby RB, Mao W, Coppola D et al. Activating SRC mutation in a subset of advanced human colon cancers. Nat. Genet.21(2), 187–190 (1999).
  • Sugimura M, Kobayashi K, Sagae S et al. Mutation of the SRC gene in endometrial carcinoma. Jpn J. Cancer Res.91(4), 395–398 (2000).
  • Wang NM, Yeh KT, Tsai CH, Chen SJ, Chang JG. No evidence of correlation between mutation at codon 531 of src and the risk of colon cancer in Chinese. Cancer Lett.150(2), 201–204 (2000).
  • Laghi L, Bianchi P, Orbetegli O, Gennari L, Roncalli M, Malesci A. Lack of mutation at codon 531 of SRC in advanced colorectal cancers from Italian patients. Br. J. Cancer84(2), 196–198 (2001).
  • Guarino M. Src signaling in cancer invasion. J. Cell Physiol.223(1), 14–26 (2010).
  • Mukhopadhyay D, Tsiokas L, Zhou XM, Foster D, Brugge JS, Sukhatme VP. Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature375(6532), 577–581 (1995).
  • Fleming RY, Ellis LM, Parikh NU, Liu W, Staley CA, Gallick GE. Regulation of vascular endothelial growth factor expression in human colon carcinoma cells by activity of src kinase. Surgery122(2), 501–507 (1997).
  • Ellis LM, Staley CA, Liu W et al. Down-regulation of vascular endothelial growth factor in a human colon carcinoma cell line transfected with an antisense expression vector specific for c-src. J. Biol. Chem.273(2), 1052–1057 (1998).
  • Karni R, Dor Y, Keshet E, Meyuhas O, Levitzki A. Activated pp60c-Src leads to elevated hypoxia-inducible factor (HIF)-1α-expression under normoxia. J. Biol. Chem.277(45), 42919–42925 (2002).
  • Niu G, Briggs J, Deng J et al. Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1α RNA expression in both tumor cells and tumor-associated myeloid cells. Mol. Cancer Res.6(7), 1099–1105 (2008).
  • Lee HY, Lee T, Lee N et al. Src activates HIF-1α; not through direct phosphorylation of HIF-1α-specific prolyl-4 hydroxylase 2 but through activation of the NADPH oxidase/Rac pathway. Carcinogenesis DOI: 10.1093/carcin/bgr034 (2011) (Epub ahead of print).
  • Chou MT, Anthony J, Bjorge JD, Fujita DJ. The von Hippel-Lindau tumor suppressor protein is destabilized by Src: implications for tumor angiogenesis and progression. Genes Cancer1(3), 225–238 (2010).
  • Gray MJ, Zhang J, Ellis LM et al. HIF-1α, STAT3, CBP/p300 and Ref-1/APE are components of a transcriptional complex that regulates Src-dependent hypoxia-induced expression of VEGF in pancreatic and prostate carcinomas. Oncogene24(19), 3110–3120 (2005).
  • Agarwal A, Tressel SL, Kaimal R et al. Identification of a metalloprotease-chemokine signaling system in the ovarian cancer microenvironment: implications for antiangiogenic therapy. Cancer Res.70(14), 5880–5890 (2010).
  • Hwang YS, Jeong M, Park JS et al. Interleukin-1β stimulates IL-8 expression through MAP kinase and ROS signaling in human gastric carcinoma cells. Oncogene23(39), 6603–6611 (2004).
  • Li A, Varney ML, Singh RK. Expression of interleukin 8 and its receptors in human colon carcinoma cells with different metastatic potentials. Clin. Cancer Res.7(10), 3298–3304 (2001).
  • Kitadai Y, Haruma K, Sumii K et al. Expression of interleukin-8 correlates with vascularity in human gastric carcinomas. Am. J. Pathol.152(1), 93–100 (1998).
  • Kitadai Y, Takahashi Y, Haruma K et al. Transfection of interleukin-8 increases angiogenesis and tumorigenesis of human gastric carcinoma cells in nude mice. Br. J. Cancer81(4), 647–653 (1999).
  • Trevino JG, Gray MJ, Nawrocki ST et al. Src activation of Stat3 is an independent requirement from NF-κB activation for constitutive IL-8 expression in human pancreatic adenocarcinoma cells. Angiogenesis9(2), 101–110 (2006).
  • Leifheit-Nestler M, Conrad G, Heida NM et al. Overexpression of integrin β5 enhances the paracrine properties of circulating angiogenic cells via Src kinase-mediated activation of STAT3. Arterioscler. Thromb. Vasc. Biol.30(7), 1398–1406 (2010).
  • Han LY, Landen CN, Trevino JG et al. Antiangiogenic and antitumor effects of SRC inhibition in ovarian carcinoma. Cancer Res.66(17), 8633–8639 (2006).
  • Herynk MH, Zhang J, Parikh NU, Gallick GE. Activation of Src by c-Met overexpression mediates metastatic properties of colorectal carcinoma cells. J. Exp. Ther. Oncol.6(3), 205–217 (2007).
  • Kilarski WW, Jura N, Gerwins P. Inactivation of Src family kinases inhibits angiogenesis in vivo: implications for a mechanism involving organization of the actin cytoskeleton. Exp. Cell Res.291(1), 70–82 (2003).
  • Niu G, Wright KL, Huang M et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene21(13), 2000–2008 (2002).
  • Roche S, Fumagalli S, Courtneidge SA. Requirement for Src family protein tyrosine kinases in G2 for fibroblast cell division. Science269(5230), 1567–1569 (1995).
  • Navarra M, Celano M, Maiuolo J et al. Antiproliferative and pro-apoptotic effects afforded by novel Src-kinase inhibitors in human neuroblastoma cells. BMC Cancer10, 602 (2010).
  • Nagaraj NS, Smith JJ, Revetta F, Washington MK, Merchant NB. Targeted inhibition of SRC kinase signaling attenuates pancreatic tumorigenesis. Mol. Cancer Ther.9(8), 2322–2332 (2010).
  • Ma JG, Huang H, Chen SM et al. PH006, a novel and selective Src kinase inhibitor, suppresses human breast cancer growth and metastasis in vitro and in vivo. Breast Cancer Res. Treat. DOI: 10.1007/s10549-010-1302-4 (2010) (Epub ahead of print).
  • Jones RJ, Young O, Renshaw L et al. Src inhibitors in early breast cancer: a methodology, feasibility and variability study. Breast Cancer Res. Treat.114(2), 211–221 (2009).
  • Wadhawan A, Smith C, Nicholson RI, Barrett-Lee P, Hiscox S. Src-mediated regulation of homotypic cell adhesion: implications for cancer progression and opportunities for therapeutic intervention. Cancer Treat. Rev.37(3), 234–241 (2011).
  • Wheelock MJ, Johnson KR. Cadherins as modulators of cellular phenotype. Annu. Rev. Cell Dev. Biol.19, 207–235 (2003).
  • Nollet F, Berx G, van Roy F. The role of the E-cadherin/catenin adhesion complex in the development and progression of cancer. Mol. Cell Biol. Res. Commun.2(2), 77–85 (1999).
  • Mao Q, Zheng X, Yang K et al. Suppression of migration and invasion of PC3 prostate cancer cell line via activating E-cadherin expression by small activating RNA. Cancer Invest.28(10), 1013–1018 (2010).
  • Reynolds AB, Daniel JM, Mo YY, Wu J, Zhang Z. The novel catenin p120cas binds classical cadherins and induces an unusual morphological phenotype in NIH3T3 fibroblasts. Exp. Cell Res.225(2), 328–337 (1996).
  • Coluccia AM, Benati D, Dekhil H, De Filippo A, Lan C, Gambacorti-Passerini C. SKI-606 decreases growth and motility of colorectal cancer cells by preventing pp60(c-Src)-dependent tyrosine phosphorylation of β-catenin and its nuclear signaling. Cancer Res.66(4), 2279–2286 (2006).
  • Lilien J, Balsamo J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of β-catenin. Curr. Opin. Cell Biol.17(5), 459–465 (2005).
  • Roura S, Miravet S, Piedra J, Garcia de Herreros A, Dunach M. Regulation of E-cadherin/catenin association by tyrosine phosphorylation. J. Biol. Chem.274(51), 36734–36740 (1999).
  • Nam JS, Ino Y, Sakamoto M, Hirohashi S. Src family kinase inhibitor PP2 restores the E-cadherin/catenin cell adhesion system in human cancer cells and reduces cancer metastasis. Clin. Cancer Res.8(7), 2430–2436 (2002).
  • Sarrio D, Perez-Mies B, Hardisson D et al. Cytoplasmic localization of p120ctn and E-cadherin loss characterize lobular breast carcinoma from preinvasive to metastatic lesions. Oncogene23(19), 3272–3283 (2004).
  • Hiscox S, Jordan NJ, Morgan L, Green TP, Nicholson RI. Src kinase promotes adhesion-independent activation of FAK and enhances cellular migration in tamoxifen-resistant breast cancer cells. Clin. Exp. Metastasis24(3), 157–167 (2007).
  • Friedl P, Wolf K. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res.68(18), 7247–7249 (2008).
  • Rivat C, Le Floch N, Sabbah M et al. Synergistic cooperation between the AP-1 and LEF-1 transcription factors in activation of the matrilysin promoter by the src oncogene: implications in cellular invasion. FASEB J.17(12), 1721–1723 (2003).
  • Hsia DA, Mitra SK, Hauck CR et al. Differential regulation of cell motility and invasion by FAK. J. Cell Biol.160(5), 753–767 (2003).
  • Van Slambrouck S, Jenkins AR, Romero AE, Steelant WF. Reorganization of the integrin α2 subunit controls cell adhesion and cancer cell invasion in prostate cancer. Int. J. Oncol.34(6), 1717–1726 (2009).
  • Boyer B, Bourgeois Y, Poupon MF. Src kinase contributes to the metastatic spread of carcinoma cells. Oncogene21(15), 2347–2356 (2002).
  • Masaki T, Igarashi K, Tokuda M et al. pp60c-src activation in lung adenocarcinoma. Eur. J. Cancer39(10), 1447–1455 (2003).
  • Wiener JR, Windham TC, Estrella VC et al. Activated SRC protein tyrosine kinase is overexpressed in late-stage human ovarian cancers. Gynecol. Oncol.88(1), 73–79 (2003).
  • Aligayer H, Boyd DD, Heiss MM, Abdalla EK, Curley SA, Gallick GE. Activation of Src kinase in primary colorectal carcinoma: an indicator of poor clinical prognosis. Cancer94(2), 344–351 (2002).
  • Zhang XHF, Wang Q, Gerald W et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell16(1), 67–78 (2009).
  • Tatarov O, Mitchell TJ, Seywright M, Leung HY, Brunton VG, Edwards J. Src family kinase activity is up-regulated in hormone-refractory prostate cancer. Clin. Cancer Res.15(10), 3540–3549 (2009).
  • Planas-Silva MD, Bruggeman RD, Grenko RT, Stanley Smith J. Role of c-Src and focal adhesion kinase in progression and metastasis of estrogen receptor-positive breast cancer. Biochem. Biophys. Res. Commun.341(1), 73–81 (2006).
  • Hiscox S, Morgan L, Green TP, Barrow D, Gee J, Nicholson RI. Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast Cancer Res. Treat.97(3), 263–274 (2006).
  • Johnson FM, Saigal B, Talpaz M, Donato NJ. Dasatinib (BMS-354825) tyrosine kinase inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous cell carcinoma and non-small cell lung cancer cells. Clin. Cancer Res.11(19 Pt 1), 6924–6932 (2005).
  • Shor AC, Keschman EA, Lee FY et al. Dasatinib inhibits migration and invasion in diverse human sarcoma cell lines and induces apoptosis in bone sarcoma cells dependent on SRC kinase for survival. Cancer Res.67(6), 2800–2808 (2007).
  • Nam S, Kim D, Cheng JQ et al. Action of the Src family kinase inhibitor, dasatinib (BMS-354825), on human prostate cancer cells. Cancer Res.65(20), 9185–9189 (2005).
  • Dong M, Rice L, Lepler S, Pampo C, Siemann DW. Impact of the Src inhibitor saracatinib on the metastatic phenotype of a fibrosarcoma (KHT) tumor model. Anticancer Res.30(11), 4405–4413 (2010).
  • Ischenko I, Guba M, Yezhelyev M et al. Effect of Src kinase inhibition on metastasis and tumor angiogenesis in human pancreatic cancer. Angiogenesis10(3), 167–182 (2007).
  • Park SI, Zhang J, Phillips KA et al. Targeting SRC family kinases inhibits growth and lymph node metastases of prostate cancer in an orthotopic nude mouse model. Cancer Res.68(9), 3323–3333 (2008).
  • Hingorani P, Zhang W, Gorlick R, Kolb EA. Inhibition of Src phosphorylation alters metastatic potential of osteosarcoma in vitro but not in vivo. Clin. Cancer Res.15(10), 3416–3422 (2009).
  • Migliaccio A, Castoria G, Auricchio F. Src-dependent signalling pathway regulation by sex-steroid hormones: therapeutic implications. Int. J. Biochem. Cell Biol.39(7–8), 1343–1348 (2007).
  • Migliaccio A, Di Domenico M, Castoria G et al. Steroid receptor regulation of epidermal growth factor signaling through Src in breast and prostate cancer cells: steroid antagonist action. Cancer Res.65(22), 10585–10593 (2005).
  • Wong CW, McNally C, Nickbarg E, Komm BS, Cheskis BJ. Estrogen receptor-interacting protein that modulates its nongenomic activity-crosstalk with Src/Erk phosphorylation cascade. Proc. Natl Acad. Sci. USA99(23), 14783–14788 (2002).
  • Li Y, Wang JP, Santen RJ et al. Estrogen stimulation of cell migration involves multiple signaling pathway interactions. Endocrinology151(11), 5146–5156 (2010).
  • Chakravarty D, Nair SS, Santhamma B et al. Extranuclear functions of ER impact invasive migration and metastasis by breast cancer cells. Cancer Res.70(10), 4092–4101 (2010).
  • Varricchio L, Migliaccio A, Castoria G et al. Inhibition of estradiol receptor/Src association and cell growth by an estradiol receptor α tyrosine-phosphorylated peptide. Mol. Cancer Res.5(11), 1213–1221 (2007).
  • Feng W, Webb P, Nguyen P et al. Potentiation of estrogen receptor activation function 1 (AF-1) by Src/JNK through a serine 118-independent pathway. Mol. Endocrinol.15(1), 32–45 (2001).
  • Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H. Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor α. J. Biol. Chem.276(13), 9817–9824 (2001).
  • Shah YM, Rowan BG. The Src kinase pathway promotes tamoxifen agonist action in Ishikawa endometrial cells through phosphorylation-dependent stabilization of estrogen receptor (α) promoter interaction and elevated steroid receptor coactivator 1 activity. Mol. Endocrinol.19(3), 732–748 (2005).
  • Morgan L, Gee J, Pumford S et al. Elevated Src kinase activity attenuates tamoxifen response in vitro and is associated with poor prognosis clinically. Cancer Biol. Ther.8(16), 1550–1558 (2009).
  • Acconcia F, Kumar R. Signaling regulation of genomic and nongenomic functions of estrogen receptors. Cancer Lett.238(1), 1–14 (2006).
  • Wong WP, Tiano JP, Liu S et al. Extranuclear estrogen receptor-α stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis. Proc. Natl Acad. Sci. USA107(29), 13057–13062 (2010).
  • Migliaccio A, Di Domenico M, Castoria G et al. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol–receptor complex in MCF-7 cells. EMBO J.15(6), 1292–1300 (1996).
  • Castoria G, Migliaccio A, Bilancio A et al. PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. EMBO J.20(21), 6050–6059 (2001).
  • Wessler S, Otto C, Wilck N, Stangl V, Fritzemeier KH. Identification of estrogen receptor ligands leading to activation of non-genomic signaling pathways while exhibiting only weak transcriptional activity. J. Steroid Biochem. Mol. Biol.98(1), 25–35 (2006).
  • Castoria G, Barone MV, Di Domenico M et al. Non-transcriptional action of oestradiol and progestin triggers DNA synthesis. EMBO J.18(9), 2500–2510 (1999).
  • Migliaccio A, Castoria G, Di Domenico M et al. Steroid-induced androgen receptor-oestradiol receptor β-Src complex triggers prostate cancer cell proliferation. EMBO J.19(20), 5406–5417 (2000).
  • Santen RJ, Fan P, Zhang Z, Bao Y, Song RX, Yue W. Estrogen signals via an extra-nuclear pathway involving IGF-1R and EGFR in tamoxifen-sensitive and -resistant breast cancer cells. Steroids74(7), 586–594 (2009).
  • Brinkman JA, El-Ashry D. ER re-expression and re-sensitization to endocrine therapies in ER-negative breast cancers. J. Mammary Gland Biol. Neoplasia14(1), 67–78 (2009).
  • Chu I, Sun J, Arnaout A et al. p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2. Cell128(2), 281–294 (2007).
  • Hiscox S, Jordan N, Morgan L et al. Adverse features of acquired antihormone resistance and their targeting. In: Therapeutic Resistance to Anti-Hormononal Drugs in Breast Cancer. Hiscox S (Ed.). Springer Publishing, London, UK, 139–159 (2009).
  • Visram H, Greer PA. 17β-estradiol and tamoxifen stimulate rapid and transient ERK activationin MCF-7 cells via distinct signaling mechanisms. Cancer Biol. Ther.5(12), 1677–1682 (2006).
  • Gee JM, Shaw VE, Hiscox SE, McClelland RA, Rushmere NK, Nicholson RI. Deciphering antihormone-induced compensatory mechanisms in breast cancer and their therapeutic implications. Endocr. Relat. Cancer13(Suppl. 1), S77–S88 (2006).
  • Acconcia F, Barnes CJ, Kumar R. Estrogen and tamoxifen induce cytoskeletal remodeling and migration in endometrial cancer cells. Endocrinology147(3), 1203–1212 (2006).
  • Zhao Y, Planas-Silva MD. Mislocalization of cell-cell adhesion complexes in tamoxifen-resistant breast cancer cells with elevated c-Src tyrosine kinase activity. Cancer Lett.275(2), 204–212 (2009).
  • Santen RJ, Song RX, Zhang Z et al. Long-term estradiol deprivation in breast cancer cells up-regulates growth factor signaling and enhances estrogen sensitivity. Endocr. Relat. Cancer12(Suppl. 1), S61–S73 (2005).
  • Vallabhaneni S, Nair BC, Cortez V et al. Significance of ER–Src axis in hormonal therapy resistance. Breast Cancer Res. Treat. DOI: 10.1007/s10549-010-1312-2 (2010) (Epub ahead of print).
  • Herynk MH, Beyer AR, Cui Y et al. Cooperative action of tamoxifen and c-Src inhibition in preventing the growth of estrogen receptor-positive human breast cancer cells. Mol. Cancer Ther.5(12), 3023–3031 (2006).
  • Planas-Silva MD, Hamilton KN. Targeting c-Src kinase enhances tamoxifen’s inhibitory effect on cell growth by modulating expression of cell cycle and survival proteins. Cancer Chemother. Pharmacol.60(4), 535–543 (2007).
  • Yan SC, Liu YP, Zhang LY et al. Ubiquitin ligase c-Cbl is involved in tamoxifen-induced apoptosis of MCF-7 cells by downregulating the survival signals. Acta Oncol. DOI: 10.3109/0284186X.2010.543144 (2010) (Epub ahead of print).
  • Chen Y, Guggisberg N, Jorda M et al. Combined Src and aromatase inhibition impairs human breast cancer growth in vivo and bypass pathways are activated in AZD0530-resistant tumors. Clin. Cancer Res.15(10), 3396–3405 (2009).
  • Mendiratta P, Mostaghel E, Guinney J et al. Genomic strategy for targeting therapy in castration-resistant prostate cancer. J. Clin. Oncol.27(12), 2022–2029 (2009).
  • Verbeek BS, Vroom TM, Adriaansen-Slot SS et al. c-Src protein expression is increased in human breast cancer. An immunohistochemical and biochemical analysis. J. Pathol.180(4), 383–388 (1996).
  • Reissig D, Clement J, Sanger J, Berndt A, Kosmehl H, Bohmer FD. Elevated activity and expression of Src-family kinases in human breast carcinoma tissue versus matched non-tumor tissue. J. Cancer Res. Clin. Oncol.127(4), 226–230 (2001).
  • Ottenhoff-Kalff AE, Rijksen G, van Beurden EA, Hennipman A, Michels AA, Staal GE. Characterization of protein tyrosine kinases from human breast cancer: involvement of the c-src oncogene product. Cancer Res.52(17), 4773–4778 (1992).
  • Wilson GR, Cramer A, Welman A et al. Activated c-SRC in ductal carcinoma in situ correlates with high tumour grade, high proliferation and HER2 positivity. Br. J. Cancer95(10), 1410–1414 (2006).
  • Bild AH, Yao G, Chang JT et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature439(7074), 353–357 (2006).
  • Luttrell DK, Lee A, Lansing TJ et al. Involvement of pp60c-src with two major signaling pathways in human breast cancer. Proc. Natl Acad. Sci. USA91(1), 83–87 (1994).
  • Muthuswamy SK, Muller WJ. Activation of Src family kinases in Neu-induced mammary tumors correlates with their association with distinct sets of tyrosine phosphorylated proteins in vivo. Oncogene11(9), 1801–1810 (1995).
  • Ishizawar RC, Miyake T, Parsons SJ. c-Src modulates ErbB2 and ErbB3 heterocomplex formation and function. Oncogene26(24), 3503–3510 (2007).
  • Ishizawar R, Parsons SJ. c-Src and cooperating partners in human cancer. Cancer Cell6(3), 209–214 (2004).
  • Li Y, Ren J, Yu W et al. The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and β-catenin. J. Biol. Chem.276(38), 35239–35242 (2001).
  • Singh R, Bandyopadhyay D. MUC1: a target molecule for cancer therapy. Cancer Biol. Ther.6(4), 481–486 (2007).
  • Yang E, Hu XF, Xing PX. Advances of MUC1 as a target for breast cancer immunotherapy. Histol. Histopathol.22(8), 905–922 (2007).
  • Egan C, Pang A, Durda D, Cheng HC, Wang JH, Fujita DJ. Activation of Src in human breast tumor cell lines: elevated levels of phosphotyrosine phosphatase activity that preferentially recognizes the Src carboxy terminal negative regulatory tyrosine 530. Oncogene18(5), 1227–1237 (1999).
  • Bjorge JD, Pang A, Fujita DJ. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J. Biol. Chem.275(52), 41439–41446 (2000).
  • Tonks NK, Muthuswamy SK. A brake becomes an accelerator: PTP1B – a new therapeutic target for breast cancer. Cancer Cell11(3), 214–216 (2007).
  • Elsberger B, Tan BA, Mallon EA, Brunton VG, Edwards J. Is there an association with phosphorylation and dephosphorylation of Src kinase at tyrosine 530 and breast cancer patient disease-specific survival. Br. J. Cancer103(12), 1831–1834 (2010).
  • Lerner EC, Smithgall TE. SH3-dependent stimulation of Src-family kinase autophosphorylation without tail release from the SH2 domain in vivo. Nat. Struct. Biol.9(5), 365–369 (2002).
  • Campbell EJ, McDuff E, Tatarov O et al. Phosphorylated c-Src in the nucleus is associated with improved patient outcome in ER-positive breast cancer. Br. J. Cancer99(11), 1769–1774 (2008).
  • Elsberger B, Tan BA, Mitchell TJ et al. Is expression or activation of Src kinase associated with cancer-specific survival in ER-, PR- and HER2-negative breast cancer patients? Am. J. Pathol.175(4), 1389–1397 (2009).
  • Hennequin LF, Allen J, Costello GF et al. The discovery of AZD0530: a novel, oral, highly selective and dual-specific inhibitor of the Src and Abl family kinases. Proc. Am. Assoc. Can. Res.46, A2537 (2005).
  • Lombardo LJ, Lee FY, Chen P et al. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J. Med. Chem.47(27), 6658–6661 (2004).
  • Bantscheff M, Eberhard D, Abraham Y et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol.25(9), 1035–1044 (2007).
  • Hannon RA, Clack G, Rimmer M et al. Effects of the Src kinase inhibitor saracatinib (AZD0530) on bone turnover in healthy men: a randomized, double-blind, placebo-controlled, multiple-ascending-dose Phase I trial. J. Bone Miner. Res.25(3), 463–471 (2010).
  • Demetri GD, Lo Russo P, MacPherson IR et al. Phase I dose-escalation and pharmacokinetic study of dasatinib in patients with advanced solid tumors. Clin. Cancer Res.15(19), 6232–6240 (2009).
  • Messersmith WA, Krishnamurthi S, Hewes BA et al. Bosutinib (SKI-606), a dual Src/Abl tyrosine kinase inhibitor: Preliminary results from a Phase 1 study in patients with advanced malignant solid tumors. J. Clin. Oncol.25(18 Suppl.), 3552 (2007).
  • Somlo G, Atzori F, Strauss L. Dasatinib plus capecitabine (Cap) for progressive advanced breast cancer (ABC): Phase I study CA180004. J. Clin. Oncol.27(43S), 1012 (2009).
  • Finn RS, Bengala C, Ibrahim N. Phase II trial of dasatinib in triple-negative breast cancer: results of study CA180059. Cancer Res.69(242S), 3118 (2009).
  • Mayer E, Baurain J, Sparano J. Dasatinib in advanced HER2/neu amplified and ER/PR-positive breast cancer: Phase II study CA180088. J. Clin. Oncol.27(15S), 1011 (2009).
  • Campone M, Bondarenko I, Brincat S. Preliminary results of a Phase 2 study of bosutinib (SKI-606), a dual Src/Abl kinase inhibitor, in patients with advanced breast cancer. Breast Can. Res. Treat.106(S268), 6062 (2007).
  • Hennequin LF, Allen J, Breed J et al. N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5- (tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. J. Med. Chem.49(22), 6465–6488 (2006).
  • Elsberger B, Fullerton R, Zino S et al. Breast cancer patients’ clinical outcome measures are associated with Src kinase family member expression. Br. J. Cancer103(6), 899–909 (2010).
  • Marchetti S, Schellens JH. The impact of FDA and EMEA guidelines on drug development in relation to Phase 0 trials. Br. J. Cancer97(5), 577–581 (2007).
  • Takimoto CH. Phase 0 clinical trials in oncology: a paradigm shift for early drug development? Cancer Chemother. Pharmacol.63(4), 703–709 (2009).
  • Hortobagyi GN. Trastuzumab in the treatment of breast cancer. N. Engl. J. Med.353(16), 1734–1736 (2005).
  • Finn RS, Dering J, Ginther C et al. Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/’triple-negative’ breast cancer cell lines growing in vitro. Breast Cancer Res. Treat.105(3), 319–326 (2007).
  • Dizdar O, Dede DS, Bulut N, Altundag K. Dasatinib may also inhibit c-Kit in triple negative breast cancer cell lines. Breast Cancer Res. Treat.107(2), 303 (2008).
  • Harputluoglu H, Dizdar O, Altundag K. Potential targeted therapy options in the management of basal cell subtype of breast carcinoma. Hum. Pathol.38(12), 1869; author reply 1870 (2007).
  • Anders CK, Acharya CR, Hsu DS et al. Age-specific differences in oncogenic pathway deregulation seen in human breast tumors. PLoS ONE3(1), e1373 (2008).
  • Moulder S, Yan K, Huang F et al. Development of candidate genomic markers to select breast cancer patients for dasatinib therapy. Mol. Cancer Ther.9(5), 1120–1127 (2010).
  • Huang F, Reeves K, Han X et al. Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: rationale for patient selection. Cancer Res.67(5), 2226–2238 (2007).
  • Hiscox S, Green TP, Jordan NJ, Smith C, James M, Nicholson RI. Combination therapy using AZD0530 and tamoxifen prevents anti-hormone resistance in breast cancer cells. Breast Cancer Res. Treat.100, S246 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.