75
Views
36
CrossRef citations to date
0
Altmetric
Review

Androgen regulation of epithelial–mesenchymal transition in prostate tumorigenesis

&
Pages 469-482 | Published online: 10 Jan 2014

References

  • Jemal A, Siegel R, Xu J, Ward E. Cancer statistics 2010. CA Cancer J. Clin.60(5), 227–300 (2010).
  • American Cancer Society. Cancer Facts and epithelial–mesenchymal transitions 2010. American Cancer Society, GA, USA (2010).
  • Taichman RS, Loberg RD, Mehra R et al. The evolving biology and treatment of prostate cancer. J. Clin. Invest.117(9), 2351–2361 (2007).
  • Brooke GN, Bevan CL. The role of androgen receptor mutations in prostate cancer progression. Curr. Genomics10(1), 18–25 (2009).
  • Schaeffer EM, Marchionni L, Huang Z et al. Androgen-induced programs for prostate epithelial growth and invasion arise in embryogenesis and are reactivated in cancer. Oncogene27(57), 7180–7191 (2008).
  • Dehm SM, Tindall DJ. Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol. Endocrinol.21(12), 2855–2863 (2007).
  • Harris WP, Mostaghel EA, Nelson PS et al. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat. Clin. Pract. Urol.6(2), 76–85 (2009).
  • Risbridger GP, Davis ID, Birrell SN, Tilley WD. Breast and prostate cancer: more similar than different. Nat. Rev. Cancer10(3), 205–212 (2010).
  • Nieto M, Finn S, Loda M, Hahn WC. Prostate cancer: re-focusing on androgen receptor signaling. Int. J. Biochem. Cell Biol.39(9), 1562–1568 (2007).
  • Mellado B, Codony J, Ribal MJ, Visa L, Gascón P. Molecular biology of androgen-independent prostate cancer: the role of the androgen receptor pathway. Clin. Transl. Oncol.11(1), 5–10 (2009).
  • Wikström P, Ohlson N, Stattin P, Bergh A. Nuclear androgen receptors recur in the epithelial and stromal compartments of malignant and non-malignant human prostate tissue several months after castration therapy. Prostate67(12), 1277–1284 (2007).
  • Wang Q, Li W, Zhang Y et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell138(2), 245–256 (2009).
  • Zhu ML, Kyprianou N. Role of androgens and the androgen receptor in epithelial–mesenchymal transition and invasion of prostate cancer cells. FASEB J.24, 769–777 (2010).
  • Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J. Cell Biol.95(1), 333–339 (1982).
  • Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial–mesenchymal transitions: the importance of changing cell state in development and disease. J. Clin. Invest.119(6), 1438–1449 (2009).
  • Yang J, Weinberg RA. Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell14(6), 818–829 (2008).
  • Kalluri R, Weinberg R. The basics of epithelial–mesenchymal transition. J. Clin. Invest.119(6), 1420–1428 (2009).
  • Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell139(5), 871–890 (2009).
  • Kalluri R. EMT: when epithelial cells decide to become mesenchymal-like cells. J. Clin. Invest.119(6), 1417–1419 (2009).
  • Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer9(4), 265–273 (2009).
  • Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat. Rev. Cancer9(4), 239–252 (2009).
  • Moustakas A, Hledin CH. Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci.98(10), 1512–1520 (2007).
  • Moreno-Bueno G, Portillo F, Cano A. Transcriptional regulation of cell polarity in EMT and cancer. Oncogene27(55), 6958–6969 (2008).
  • Tse J, Kalluri R. Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J. Cell Biochem.101(4), 816–829 (2007).
  • Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res.70(14), 5649–5669 (2010).
  • Geiger TR, Peeper DS. Metastasis mechanisms. Biochim. Biophys. Acta1796(2), 293–308 (2009).
  • Iwatsuki M, Mimori K, Yokobori T et al. Epithelial–mesenchymal transition in cancer development and its clinical significance. Cancer Sci.101(2), 293–299 (2010).
  • Voulgari A, Pintzas A. Epithelial–mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim. Biophys. Acta1796(2), 75–90 (2009).
  • Chaffer CL, Thompson EW, Williams ED. Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs185(1–3), 7–19 (2007).
  • Hara T, Miyazaki H, Lee A, Tran CP, Reiter RE. Androgen receptor and invasion in prostate cancer. Cancer Res.68(4), 1128–1135 (2008).
  • Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res.68(10), 3645–3654 (2008).
  • Jeanes A, Gottardi CJ, Yap AS. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene27(55), 6920–6929 (2008).
  • Makrilia N, Kollias A, Manolopoulos L, Syrigos K. Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest.27(10), 1023–1037 (2009).
  • Zeisberg M, Neilson E. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest.119(6), 1429–1437 (2009).
  • Liu YN, Liu Y, Lee HJ, Hsu YH, Chen JH. Activated androgen receptor downregulates E-cadherin gene expression and promotes tumor metastasis. Mol. Cell Biol.28(23), 7096–7108 (2008).
  • Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J. Cell Sci.121(Pt 6), 727–735 (2008).
  • Gravdal K, Halvorsen OJ, Haukaas SA, Akslen LA. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin. Cancer Res.13(23), 7003–7011 (2007).
  • Harris TJ, Tepass U. Adherens junctions: from molecules to morphogenesis. Nat. Rev. Mol. Cell Bio.11(7), 502–514 (2010).
  • Jaggi M, Nazemi T, Abrahams NA et al. N-cadherin switching occurs in high Gleason grade prostate cancer. Prostate66(2), 193–199 (2006).
  • Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev.28(1–2), 15–33 (2009).
  • Jennbacken K, Tešan T, Wang W, Gustavsson H, Damber JE, Welén K. N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. Endocr. Relat. Cancer17(2), 469–479 (2010).
  • Tanaka H, Kono E, Tran CP et al. Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat. Med.16(12), 1414–1420 (2010).
  • Li H, Price DK, William D, Figg WD. ADH1, an N-cadherin inhibitor, evaluated in preclinical models of angiogenesis and androgen-independent prostate cancer. Anticancer Drugs18(5), 563–568 (2007).
  • Blaschuk OW, Devemy E. Cadherins as novel targets for anti-cancer therapy. Eur. J. Pharmacol.625(1–3), 195–198 (2009).
  • Chu K, Cheng CJ, Ye X et al. Cadherin-11 promotes the metastasis of prostate cancer cells to bone. Mol. Cancer Res.6(8), 1259–1267 (2008).
  • Lee YC, Cheng CJ, Huang M et al. Androgen depletion up-regulated cadherin-11 expression in prostate cancer. J. Pathol.221(1), 68–76 (2010).
  • Niu YN, Xia SJ. Stroma–epithelium crosstalk in prostate cancer. Asian J. Androl.11(1), 28–35 (2009).
  • Robinson DR, Zylstra CR, Williams BO. Wnt signaling and prostate cancer. Curr. Drug Targets9(7), 571–780 (2008).
  • Li Y, Wang L, Zhang M et al. LEF1 in androgen-independent prostate cancer: regulation of androgen receptor expression, prostate cancer growth, and invasion. Cancer Res.69(8), 3332–3338 (2009).
  • Wang G, Wang J, Sadar MD. Crosstalk between the androgen receptor and β-catenin in castrate-resistant prostate cancer. Cancer Res.68(23), 9918–9927 (2008).
  • Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev.28(1–2), 151–166 (2009).
  • Polette M, Mestdagt M, Bindels S et al. β-Catenin and ZO-1: shuttle molecules involved in tumor invasion-associated epithelial–mesenchymal transition processes. Cells Tissues Organs185(1–3), 61–65 (2007).
  • Whitaker HC, Girling J, Warren AY, Leung H, Mills IG, Neal DE. Alterations in β-catenin expression and localization in prostate cancer. Prostate68(11), 1196–1205 (2008).
  • Saha B, Arase A, Imam SS et al. Overexpression of E-cadherin and β-catenin proteins in metastatic prostate cancer cells in bone. Prostate68(1), 78–84 (2008).
  • Schweizer L, Rizzo CA, Spires TE et al. The androgen receptor can signal through Wnt/ β-catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens. BMC Cell Biol.9, 4 (2008).
  • Heebøll S, Borre M, Ottosen PD, Dyrskjøt L, Torben FØ, Tørring N. Snail1 is over-expressed in prostate cancer. APMIS117(3), 196–204 (2009).
  • Hou Z, Peng H, White DE et al. 14-13-3 binding sites in the snail protein are essential for snail mediated transcriptional repression and epithelial–mesenchymal differentiation. Cancer Res.70(11), 4385–4393 (2010).
  • Du C, Zhang C, Hassan S, Biswas MH, Balaji KC. Protein kinase D1 suppresses epithelial-to-mesenchymal transition through phosphorylation of snail. Cancer Res.70(20), 7810–7819 (2010).
  • Ota I, Li XY, Hu Y, Weiss SJ. Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc. Natl Acad. Sci. USA106(48), 20318–20323 (2009).
  • Baygi EM, Soheili ZS, Schmitz I, Sameie S, Schulz WA. Snail regulated cell survival and inhibits senescence in human metastatic prostate cancer cell lines. Cell Biol. Toxicol.26(6), 553–567 (2010).
  • Olmeda D, Jordá M, Peinado H, Fabra A, Cano A. Snail silencing effectively suppresses tumor growth and invasiveness. Oncogene26(13), 1862–1874 (2007).
  • Cakouros D, Raices RM, Gronthos S, Glackin CA. Twist-ing cell fate: mechanistic insights into the role of twist in lineage specification/differentiation and tumorigenesis. J. Cell Biochem.110(6), 1288–1298 (2010).
  • Ansieau S, Morel AP, Hinkal G, Bastid J, Puisieux A. TWISTing an embryonic transcription factor into an oncoprotein. Oncogene29(22), 3173–3184 (2010).
  • Yuen HF, Chua CW, Chan YP, Wong YC, Wang X, Chan KW. Significance of TWIST and E-cadherin expression in the metastatic progression of prostatic cancer. Histopathology50(5), 648–658 (2007).
  • Shiota M, Yokomizo A, Tada Y et al. Castration resistance of prostate cancer cells caused by castration-induced oxidative stress through Twist1 and androgen receptor overexpression. Oncogene29(2), 237–250 (2010).
  • Lefebvre V, Dumitriu B, Penzo-Méndez A, Han Y, Pallavi B. Control of cell fate and differentiation by sry-related highmobility-group box (Sox) transcription factors. Int. J. Cell Biol.39(12), 2195–2214 (2007).
  • Wang H, McKnight NC, Zhang T, Lu ML, Balk SP, Yuan X. SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells. Cancer Res.67(2), 528–536 (2007).
  • Wang H, Leav I, Ibaragi S et al. SOX9 is expressed in human fetal prostate epithelium and enhances prostate cancer invasion. Cancer Res.68(6), 1625–1630 (2008).
  • Thomsen MK, Butler CM, Shen MM, Swain A. Sox9 is required for prostate development. Dev. Biol.316(2), 302–311 (2008).
  • Peinado H, Olmeda D, Cano A. Snail, ZEB and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat. Rev. Cancer7(6), 415–428 (2007).
  • Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop – a motor of cellular plasticity in development and cancer. EMBO Rep.11(9), 670–677 (2010).
  • Vandewalle C, Van Roy F, Berx G. The role of the ZEB family of transcription factors in development and disease. Cell Mol. Life Sci.66(5), 773–787 (2009).
  • Spaderna S, Schmalhofer O, Wahlbuhl M et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res.68(2), 537–544 (2008).
  • Aigner K, Dampier B, Descovich L et al. The transcription factor ZEB1 (ΔEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene26(49), 6979–6988 (2007).
  • Graham T, Zhau H, Odero-Marah V et al. Insulin-like growth factor-1-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res.68(7), 2479–2488 (2008).
  • Anose BM, LaGoo L, Schwendinger J. Characterization of androgen regulation of ZEB-1 and PSA in 22RV1 prostate cancer cells. Adv. Exp. Med. Biol.617, 541–546 (2008).
  • Drake JM, Strohbehn G, Moreland JG, Henry MD. ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol. Biol. Cell20(8), 2207–2217 (2009).
  • Lui Y, El-Naggar S, Darling DS, Higashi Y, Dean DC. Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development135(3), 579–588 (2008).
  • Das S, Becker BN, Hoffmann FM, Mertz JE. Complete reversal of epithelial to mesenchymal transition requires inhibition of both ZEB expression and the Rho pathway. BMC Cell Biol.10, 94 (2009).
  • Miyazono K. Transforming growth factor-β signaling in epithelial–mesenchymal transition and progression of cancer. Proc. Jpn Acad. Ser.85(8), 314–323 (2009).
  • Spoelstra NS, Manning NG, Higashi Y et al. The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Res.66(7), 3893–3902 (2006).
  • Graham TR, Yacoub R, Taliaferro-Smith L et al. Reciprocal regulation of ZEB1 and AR in triple negative breast cancer cells. Breast Cancer Res. Treat.123(1), 139–147 (2010).
  • Strover DG, Bierie B, Moses HL.A delicate balance: TGF-β and the tumor microenvironment. J. Cell Biochem.101(4), 851–861 (2007).
  • Laconi E. The evolving concept of tumor microenvironments. Bioessays29(8), 738–744 (2007).
  • Yang F, Tuxhorn JA, Ressler SJ, McAlhany SJ, Dang TD, Rowley DR. Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res.65(19), 8887–8895 (2005).
  • Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat. Genet.29(2), 117–129 (2001).
  • Zhu B, Kyprianou N. TGF-β signaling in prostate cancer. Cancer Treat. Res.126, 157–173 (2005).
  • Prins GS, Putz O. Molecular signaling pathways that regulate prostate gland development. Differentiation76(6), 641–659 (2008).
  • Ivanovic V, Melman A, Davis-Joseph B, Valcic M, Gelieber J. Elevated plasma levels of TGF-β in patients with invasive cancer. Nat. Med.1(4), 282–284 (1995).
  • Morton DM, Barrack ER. Modulation of transforming growth factor-β effects on prostate cancer cell proliferation by growth factors and extracellular matrix. Cancer Res.55(12), 2596–2602 (1995).
  • Joesting MS, Perrin S, Elenbaas B et al. Identification of SFRP1 as a candidate mediator of stromal-to-epithelial signaling in prostate cancer. Cancer Res.65(22), 10423–10430 (2005).
  • Ayala GE, Dai H, Tahir SA et al. Stromal antiapototic paracrine loop in perineural invasion of prostatic carcinoma. Cancer Res.66(10), 5159–5164 (2006).
  • Pu H, Collazo J, Jones E et al. Dysfunctional transforming growth factor-β receptor II accelerates prostate tumorigenesis in the TRAMP mouse model. Cancer Res.69(18), 7366–7374 (2009).
  • Cano P, Godoy A, Escamilla R, Dhir R, Onate SA. Stromal–epithelial cell interactions and androgen receptor–coregulator recruitment is altered in the tissue microenvironment of prostate cancer. Cancer Res.67(2), 511–519 (2007).
  • Jones E, Pu H, Kyprianou N. Targeting TGF-β in prostate cancer: therapeutic possibilities during tumor progression. Expert Opin Ther. Targets13(2), 227–234 (2009).
  • Dutsch-Wicherek M. RCAS1, MT, and vimentin as potential markers of tumor microenvironment remodeling. Am. J. Reprod. Immunol.63(3), 181–188 (2010).
  • Zhao Y, Yan Q, Long X. Chen X, Wang Y. Vimentin affects the mobility and invasiveness of prostate cancer cells. Cell Biochem. Funct.26(5), 571–577 (2008).
  • Mendez MG, Kojima SI, Goldman RD. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J.24(6), 1838–1851 (2010).
  • Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell141(1), 52–67 (2010).
  • Wilson TJ, Singh RK. Proteases as modulators of tumor-stromal interaction: primary tumors to bone metastases. Biochim. Biophys. Acta1785(2), 85–95 (2008).
  • Orlichenko LS, Radisky DC. Matrix metalloproteinases stimulate epithelial–mesenchymal transition during tumor development. Clin. Exp. Metastasis25(6), 593–600 (2008).
  • Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J.278(1), 16–27 (2010).
  • Escaff S, Fernández JM, González LO et al. Study of matrix metalloproteinases and their inhibitors in prostate cancer. Br. J. Cancer102(5), 922–929 (2010).
  • Lawrence M, Veveri-Lowe T, Whitbread A, Nicol D, Clements J. Epithelial–mesenchymal transitions in prostate cancer and the potential role of kallikrein serine proteases. Cells Tissues Organs185(1–3), 111–115 (2007).
  • Kaarbø M, Klokk TI, Saatcioglu FS. Androgen signaling and its interaction with other signaling pathways in prostate cancer. Bioessays29(12), 1227–1238 (2007).
  • Blum R, Gupta R, Burger PE et al. Molecular signatures of the primitive prostate stem cell niche reveal novel mesenchymal-epithelial signaling pathways. PLoS One5(9), e13024 (2010).
  • Taylor RA, Risbridger GP. Prostatic tumor stroma: a key player in cancer progression. Curr. Cancer Drug Targets8, 490–497 (2008).
  • Wang X, Kruithof-de Julio M, Economides KD et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature461(7263), 495–500 (2009).
  • Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer8(10), 755–768 (2008).
  • Kong D, Banerjee S, Ahmad A et al. Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One5(8), e12445 (2010).
  • Mani SA, Guo W, Liao MJ et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell133(4), 704–715 (2008).
  • Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene29(34), 4741–4751 (2010).
  • Klarmann GJ, Hurt EM, Mathews LA et al. Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin. Exp. Metastasis26, 433–446 (2009).
  • Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA. MicroRNAs – the micro steering wheel of tumor metastases. Nat. Rev. Cancer9(4), 293–302 (2009).
  • Liu C, Kelnar K, Liu B et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat. Med.17(2), 211–216 (2011).
  • Zhang H, Li Y, Lai M. The microRNA network and tumor metastasis. Oncogene29, 937–948 (2010).
  • Dykxhoorn DM. MicroRNAs and metastasis: little RNAs go a long way. Cancer Res.70(16), 6401–6406 (2010).
  • Tessel MA, Krett NL, Rosen ST. Steroid receptor and microRNA regulation in cancer. Curr. Opin. Oncol.22(6), 592–597 (2010).
  • Ostling P, Leivonen SK, Aakula A et al. Systematic analysis of micrornas targeting the androgen receptor in prostate cancer cells. Cancer Res.71(5), 1956–1967 (2011).
  • De Wever O, Pauwels P, De Craene B et al. Molecular and pathological signatures of epithelial–mesenchymal transitions at the cancer invasion front. Histochem. Cell Biol.130(3), 481–494 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.